These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 26765032

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres.
    Stopper D, Thorneywork AL, Dullens RPA, Roth R.
    J Chem Phys; 2018 Mar 14; 148(10):104501. PubMed ID: 29544259
    [Abstract] [Full Text] [Related]

  • 4. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F, Fischer B, Roseker W, Grübel G, ägele G, Heinen M.
    J Chem Phys; 2012 Sep 21; 137(11):114504. PubMed ID: 22998268
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Spreading of colloid clusters in a quasi-one-dimensional channel.
    Xu X, Lin B, Cui B, Dinner AR, Rice SA.
    J Chem Phys; 2010 Feb 28; 132(8):084902. PubMed ID: 20192315
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC, Cichocki B, Ekiel-Jezewska ML, Nägele G, Wajnryb E.
    J Chem Phys; 2011 Jun 28; 134(24):244903. PubMed ID: 21721660
    [Abstract] [Full Text] [Related]

  • 11. Self-diffusion coefficient of the hard-sphere fluid: system size dependence and empirical correlations.
    Heyes DM, Cass MJ, Powles JG, Evans WA.
    J Phys Chem B; 2007 Feb 15; 111(6):1455-64. PubMed ID: 17249725
    [Abstract] [Full Text] [Related]

  • 12. Short-time dynamics of permeable particles in concentrated suspensions.
    Abade GC, Cichocki B, Ekiel-Jezewska ML, Nägele G, Wajnryb E.
    J Chem Phys; 2010 Jan 07; 132(1):014503. PubMed ID: 20078168
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Thermodynamic and hydrodynamic interaction in concentrated microgel suspensions: Hard or soft sphere behavior?
    Eckert T, Richtering W.
    J Chem Phys; 2008 Sep 28; 129(12):124902. PubMed ID: 19045060
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Test of the universal scaling law of diffusion in colloidal monolayers.
    Ma X, Chen W, Wang Z, Peng Y, Han Y, Tong P.
    Phys Rev Lett; 2013 Feb 15; 110(7):078302. PubMed ID: 25166414
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.
    Doster W, Longeville S.
    Biophys J; 2007 Aug 15; 93(4):1360-8. PubMed ID: 17513357
    [Abstract] [Full Text] [Related]

  • 19. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D, Fluerasu A, Moussaïd A, Zontone F, Cristofolini L, Madsen A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 15; 85(1 Pt 1):011402. PubMed ID: 22400568
    [Abstract] [Full Text] [Related]

  • 20. Structures and dynamics of thermosensitive microgel suspensions studied with three-dimensional cross-correlated light scattering.
    Pyett S, Richtering W.
    J Chem Phys; 2005 Jan 15; 122(3):34709. PubMed ID: 15740219
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.