These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
258 related items for PubMed ID: 26768970
1. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. Nelson JA. J Fish Biol; 2016 Jan; 88(1):10-25. PubMed ID: 26768970 [Abstract] [Full Text] [Related]
2. The measurement of energy expenditure. Webb P. J Nutr; 1991 Nov; 121(11):1897-901. PubMed ID: 1941199 [Abstract] [Full Text] [Related]
3. On heat, respiration, and calorimetry. Frankenfield DC. Nutrition; 2010 Oct; 26(10):939-50. PubMed ID: 20558039 [Abstract] [Full Text] [Related]
6. Indirect calorimetry methods for determination of energy expenditure. Dárdai E. Acta Chir Hung; 1990 Oct; 31(1):47-61. PubMed ID: 2122623 [Abstract] [Full Text] [Related]
7. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Criddle RS, Fontana AJ, Rank DR, Paige D, Hansen LD, Breidenbach RW. Anal Biochem; 1991 May 01; 194(2):413-7. PubMed ID: 1907437 [Abstract] [Full Text] [Related]
8. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Kenny GP, Notley SR, Gagnon D. Eur J Appl Physiol; 2017 Sep 01; 117(9):1765-1785. PubMed ID: 28689303 [Abstract] [Full Text] [Related]
9. A simple and affordable calorespirometer for assessing the metabolic rates of fishes. Regan MD, Gosline JM, Richards JG. J Exp Biol; 2013 Dec 15; 216(Pt 24):4507-13. PubMed ID: 24072793 [Abstract] [Full Text] [Related]
10. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. Kim ER, Tong Q. Methods Mol Biol; 2017 Dec 15; 1566():135-143. PubMed ID: 28244047 [Abstract] [Full Text] [Related]
11. The utility and determination of Pcrit in fishes. Ultsch GR, Regan MD. J Exp Biol; 2019 Nov 13; 222(Pt 22):. PubMed ID: 31722971 [Abstract] [Full Text] [Related]
12. A validation and comparison study of two metabolic monitors. Phang PT, Rich T, Ronco J. JPEN J Parenter Enteral Nutr; 1990 Nov 13; 14(3):259-61. PubMed ID: 2112638 [Abstract] [Full Text] [Related]
14. Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated constant oxygen consumption and respirometers of different sizes. Svendsen MB, Bushnell PG, Christensen EA, Steffensen JF. J Fish Biol; 2016 Jan 13; 88(1):51-64. PubMed ID: 26768971 [Abstract] [Full Text] [Related]
15. Assessing energy requirements of patients on respirators. McCamish MA, Dean RE, Ouellette TR. JPEN J Parenter Enteral Nutr; 1981 Jan 13; 5(6):513-6. PubMed ID: 6801286 [Abstract] [Full Text] [Related]
16. Effects of gas leak around endotracheal tubes on indirect calorimetry measurement. Dietrich KA, Romero MD, Conrad SA. JPEN J Parenter Enteral Nutr; 1990 Jan 13; 14(4):408-13. PubMed ID: 2119449 [Abstract] [Full Text] [Related]
17. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants. Dechert RE, Wesley JR, Schafer LE, LaMond S, Nicks J, Coran AG, Bartlett RH. JPEN J Parenter Enteral Nutr; 1988 Jan 13; 12(3):256-9. PubMed ID: 3134559 [Abstract] [Full Text] [Related]
19. Recent advances in telemetry for estimating the energy metabolism of wild fishes. Metcalfe JD, Wright S, Tudorache C, Wilson RP. J Fish Biol; 2016 Jan 13; 88(1):284-97. PubMed ID: 26592370 [Abstract] [Full Text] [Related]
20. Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions. Hannan KD, Rummer JL. J Exp Biol; 2018 Mar 07; 221(Pt 5):. PubMed ID: 29514874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]