These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 26773450
1. Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Liu B, Huang PJ, Kelly EY, Liu J. Biotechnol J; 2016 Jun; 11(6):780-7. PubMed ID: 26773450 [Abstract] [Full Text] [Related]
2. Mechanism of DNA adsorption and desorption on graphene oxide. Park JS, Goo NI, Kim DE. Langmuir; 2014 Oct 28; 30(42):12587-95. PubMed ID: 25283243 [Abstract] [Full Text] [Related]
3. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Wu M, Kempaiah R, Huang PJ, Maheshwari V, Liu J. Langmuir; 2011 Mar 15; 27(6):2731-8. PubMed ID: 21302946 [Abstract] [Full Text] [Related]
4. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. Liu M, Song J, Shuang S, Dong C, Brennan JD, Li Y. ACS Nano; 2014 Jun 24; 8(6):5564-73. PubMed ID: 24857187 [Abstract] [Full Text] [Related]
5. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide. Wu C, Zhou Y, Miao X, Ling L. Analyst; 2011 May 21; 136(10):2106-10. PubMed ID: 21442091 [Abstract] [Full Text] [Related]
6. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H. Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796 [Abstract] [Full Text] [Related]
7. Mechanisms of DNA sensing on graphene oxide. Liu B, Sun Z, Zhang X, Liu J. Anal Chem; 2013 Aug 20; 85(16):7987-93. PubMed ID: 23875867 [Abstract] [Full Text] [Related]
8. Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Zhang F, Wang S, Liu J. Anal Chem; 2019 Nov 19; 91(22):14743-14750. PubMed ID: 31675214 [Abstract] [Full Text] [Related]
9. Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. He D, He X, Wang K, Yang X, Yang X, Li X, Zou Z. Chem Commun (Camb); 2014 Sep 28; 50(75):11049-52. PubMed ID: 25098407 [Abstract] [Full Text] [Related]
10. A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Zhang S, Wang K, Li KB, Shi W, Jia WP, Chen X, Sun T, Han DM. Biosens Bioelectron; 2017 May 15; 91():374-379. PubMed ID: 28056441 [Abstract] [Full Text] [Related]
11. A Graphene Oxide-Based Sensing Platform for the Determination of Methicillin-Resistant Staphylococcus aureus Based on Strand-Displacement Polymerization Recycling and Synchronous Fluorescent Signal Amplification. Ning Y, Gao Q, Zhang X, Wei K, Chen L. J Biomol Screen; 2016 Sep 15; 21(8):851-7. PubMed ID: 27286718 [Abstract] [Full Text] [Related]
12. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Hu P, Zhu C, Jin L, Dong S. Biosens Bioelectron; 2012 Apr 15; 34(1):83-7. PubMed ID: 22382074 [Abstract] [Full Text] [Related]
13. Graphene oxide-based amplified fluorescent biosensor for Hg(2+) detection through hybridization chain reactions. Huang J, Gao X, Jia J, Kim JK, Li Z. Anal Chem; 2014 Mar 18; 86(6):3209-15. PubMed ID: 24564628 [Abstract] [Full Text] [Related]
14. Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe. Gao Y, Li Y, Zou X, Huang H, Su X. Anal Chim Acta; 2012 Jun 20; 731():68-74. PubMed ID: 22652266 [Abstract] [Full Text] [Related]
15. Fluorescent sensors using DNA-functionalized graphene oxide. Liu Z, Liu B, Ding J, Liu J. Anal Bioanal Chem; 2014 Nov 20; 406(27):6885-902. PubMed ID: 24986027 [Abstract] [Full Text] [Related]
16. Fluorescent aptasensor based on aggregation-induced emission probe and graphene oxide. Li X, Ma K, Zhu S, Yao S, Liu Z, Xu B, Yang B, Tian W. Anal Chem; 2014 Jan 07; 86(1):298-303. PubMed ID: 24299305 [Abstract] [Full Text] [Related]
17. A Facile, Label-Free, and Universal Biosensor Platform Based on Target-Induced Graphene Oxide Constrained DNA Dissociation Coupling with Improved Strand Displacement Amplification. Huang Z, Luo Z, Chen J, Xu Y, Duan Y. ACS Sens; 2018 Nov 26; 3(11):2423-2431. PubMed ID: 30335968 [Abstract] [Full Text] [Related]
18. Detection of Ag⁺ ions and cysteine based on chelation actions between Ag⁺ ions and guanine bases. Chen X, Chen Y, Zhou X, Hu J. Talanta; 2013 Mar 30; 107():277-83. PubMed ID: 23598223 [Abstract] [Full Text] [Related]
19. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays. Hu K, Liu J, Chen J, Huang Y, Zhao S, Tian J, Zhang G. Biosens Bioelectron; 2013 Apr 15; 42():598-602. PubMed ID: 23261695 [Abstract] [Full Text] [Related]
20. A general strategy to create RNA aptamer sensors using "regulated" graphene oxide adsorption. Song J, Lau PS, Liu M, Shuang S, Dong C, Li Y. ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21806-12. PubMed ID: 24992732 [Abstract] [Full Text] [Related] Page: [Next] [New Search]