These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Kamran MA, Syed JH, Eqani SA, Munis MF, Chaudhary HJ. Environ Sci Pollut Res Int; 2015 Jun; 22(12):9275-83. PubMed ID: 25592913 [Abstract] [Full Text] [Related]
3. Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY, Hussain S, Bulgariu L. Chemosphere; 2018 Jan; 190():234-242. PubMed ID: 28992475 [Abstract] [Full Text] [Related]
4. The role of Ni- and Cd-resistant rhizobacteria in promoting the growth of rice seedlings and alleviating the combined phytotoxicity of Ni and Cd. Zhou W, Yang J, Qi L, Wang G, Guan C, Li Q. Ecotoxicol Environ Saf; 2024 Oct 15; 285():117138. PubMed ID: 39353377 [Abstract] [Full Text] [Related]
5. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S, Gontia-Mishra I, Tiwari S. Microbiol Res; 2018 Jan 15; 206():25-32. PubMed ID: 29146257 [Abstract] [Full Text] [Related]
6. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination. Weyens N, Beckers B, Schellingen K, Ceulemans R, van der Lelie D, Newman L, Taghavi S, Carleer R, Vangronsveld J. Int J Phytoremediation; 2015 Jan 15; 17(1-6):40-8. PubMed ID: 25174423 [Abstract] [Full Text] [Related]
7. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Belimov AA, Safronova VI, Mimura T. Can J Microbiol; 2002 Mar 15; 48(3):189-99. PubMed ID: 11989762 [Abstract] [Full Text] [Related]
12. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum. Ghasemi R, Ghaderian SM, Krämer U. New Phytol; 2009 Nov 15; 184(3):566-580. PubMed ID: 19691676 [Abstract] [Full Text] [Related]
13. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Rehman MZ, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS. Ecotoxicol Environ Saf; 2016 Nov 15; 133():218-25. PubMed ID: 27467022 [Abstract] [Full Text] [Related]
14. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. Int J Phytoremediation; 2017 Sep 02; 19(9):813-824. PubMed ID: 28699781 [Abstract] [Full Text] [Related]
15. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR. Environ Pollut; 2007 Jun 02; 147(3):540-5. PubMed ID: 17141927 [Abstract] [Full Text] [Related]
16. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N. J Genet Eng Biotechnol; 2021 Oct 06; 19(1):149. PubMed ID: 34613510 [Abstract] [Full Text] [Related]
20. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Tank N, Saraf M. J Basic Microbiol; 2009 Apr 06; 49(2):195-204. PubMed ID: 18798171 [Abstract] [Full Text] [Related] Page: [Next] [New Search]