These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 26790879

  • 1. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.
    Kroneck PM.
    J Biol Inorg Chem; 2016 Mar; 21(1):29-38. PubMed ID: 26790879
    [Abstract] [Full Text] [Related]

  • 2. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.
    Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PM, Einsle O.
    Proc Natl Acad Sci U S A; 2007 Feb 27; 104(9):3073-7. PubMed ID: 17360611
    [Abstract] [Full Text] [Related]

  • 3. Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase.
    Tenbrink F, Schink B, Kroneck PM.
    J Bacteriol; 2011 Mar 27; 193(5):1229-36. PubMed ID: 21193613
    [Abstract] [Full Text] [Related]

  • 4. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.
    Boll M, Einsle O, Ermler U, Kroneck PM, Ullmann GM.
    J Mol Microbiol Biotechnol; 2016 Mar 27; 26(1-3):119-37. PubMed ID: 26959374
    [Abstract] [Full Text] [Related]

  • 5. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme.
    Meckenstock RU, Krieger R, Ensign S, Kroneck PM, Schink B.
    Eur J Biochem; 1999 Aug 27; 264(1):176-82. PubMed ID: 10447686
    [Abstract] [Full Text] [Related]

  • 6. Living on acetylene. A primordial energy source.
    Ten Brink F.
    Met Ions Life Sci; 2014 Aug 27; 14():15-35. PubMed ID: 25416389
    [Abstract] [Full Text] [Related]

  • 7. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.
    Liao RZ, Yu JG, Himo F.
    Proc Natl Acad Sci U S A; 2010 Dec 28; 107(52):22523-7. PubMed ID: 21149684
    [Abstract] [Full Text] [Related]

  • 8. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA, Weiner JH.
    J Biol Inorg Chem; 2015 Mar 28; 20(2):349-72. PubMed ID: 25267303
    [Abstract] [Full Text] [Related]

  • 9. Unraveling the Way Acetaldehyde is Formed from Acetylene: A Study Based on DFT.
    Habib U, Riaz M, Hofmann M.
    ACS Omega; 2021 Mar 16; 6(10):6924-6933. PubMed ID: 33748606
    [Abstract] [Full Text] [Related]

  • 10. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.
    Rosner BM, Schink B.
    J Bacteriol; 1995 Oct 16; 177(20):5767-72. PubMed ID: 7592321
    [Abstract] [Full Text] [Related]

  • 11. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex.
    Liu YF, Liao RZ, Ding WJ, Yu JG, Liu RZ.
    J Biol Inorg Chem; 2011 Jun 16; 16(5):745-52. PubMed ID: 21476050
    [Abstract] [Full Text] [Related]

  • 12. Isolation and characterization of a bis(dithiolene)-supported tungsten-acetylenic complex as a model for acetylene hydratase.
    Cranswick MA, Sperber EC, Houser RP, Farquhar ER.
    J Inorg Biochem; 2024 Jun 16; 255():112543. PubMed ID: 38554579
    [Abstract] [Full Text] [Related]

  • 13. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I.
    J Biol Inorg Chem; 2004 Mar 16; 9(2):145-51. PubMed ID: 14669076
    [Abstract] [Full Text] [Related]

  • 14. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.
    Peschel LM, Belaj F, Mösch-Zanetti NC.
    Angew Chem Int Ed Engl; 2015 Oct 26; 54(44):13018-21. PubMed ID: 26480335
    [Abstract] [Full Text] [Related]

  • 15. Structural Mimics of Acetylene Hydratase: Tungsten Complexes Capable of Intramolecular Nucleophilic Attack on Acetylene.
    Vidovič C, Peschel LM, Buchsteiner M, Belaj F, Mösch-Zanetti NC.
    Chemistry; 2019 Nov 13; 25(63):14267-14272. PubMed ID: 31603595
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Soft Scorpionate Hydridotris(2-mercapto-1-methylimidazolyl) borate) Tungsten-Oxido and -Sulfido Complexes as Acetylene Hydratase Models.
    Vidovič C, Belaj F, Mösch-Zanetti NC.
    Chemistry; 2020 Sep 25; 26(54):12431-12444. PubMed ID: 32640122
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Nucleophiles Target the Tungsten Center Over Acetylene in Biomimetic Models.
    Ćorović MZ, Milinkovic A, Stix N, Dupé A, Mösch-Zanetti NC.
    Inorg Chem; 2024 Jul 01; 63(26):11953-11962. PubMed ID: 38877603
    [Abstract] [Full Text] [Related]

  • 20. Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase.
    Bol E, Bevers LE, Hagedoorn PL, Hagen WR.
    J Biol Inorg Chem; 2006 Nov 01; 11(8):999-1006. PubMed ID: 16924554
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.