These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 2679145
21. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS. Bästlein C, Burckhardt G. Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600 [Abstract] [Full Text] [Related]
22. Na+-H+ antiporter of rat colonic basolateral membrane vesicles. Dudeja PK, Foster ES, Brasitus TA. Am J Physiol; 1989 Oct; 257(4 Pt 1):G624-32. PubMed ID: 2552827 [Abstract] [Full Text] [Related]
23. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex. Russel FG, van der Linden PE, Vermeulen WG, Heijn M, van Os CH, van Ginneken CA. Biochem Pharmacol; 1988 Jul 01; 37(13):2639-49. PubMed ID: 3390224 [Abstract] [Full Text] [Related]
24. Folate transport by human intestinal brush-border membrane vesicles. Said HM, Ghishan FK, Redha R. Am J Physiol; 1987 Feb 01; 252(2 Pt 1):G229-36. PubMed ID: 3826350 [Abstract] [Full Text] [Related]
26. Mechanisms of p-aminohippurate transport by brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Hori R, Takano M, Okano T, Kitazawa S, Inui K. Biochim Biophys Acta; 1982 Oct 22; 692(1):97-100. PubMed ID: 7171590 [Abstract] [Full Text] [Related]
27. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Tiruppathi C, Balkovetz DF, Ganapathy V, Miyamoto Y, Leibach FH. Biochem J; 1988 Nov 15; 256(1):219-23. PubMed ID: 2851979 [Abstract] [Full Text] [Related]
30. Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. Freel RW, Hatch M, Vaziri ND. Am J Physiol; 1998 Sep 15; 275(3):C748-57. PubMed ID: 9730958 [Abstract] [Full Text] [Related]
31. Several phosphate transport processes are present in vascular smooth muscle cells. Hortells L, Guillén N, Sosa C, Sorribas V. Am J Physiol Heart Circ Physiol; 2020 Feb 01; 318(2):H448-H460. PubMed ID: 31886722 [Abstract] [Full Text] [Related]
32. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles. Moseley RH, Meier PJ, Aronson PS, Boyer JL. Am J Physiol; 1986 Jan 01; 250(1 Pt 1):G35-43. PubMed ID: 3002192 [Abstract] [Full Text] [Related]
33. Mechanism of transport of riboflavin in rabbit intestinal brush border membrane vesicles. Said HM, Mohammadkhani R, McCloud E. Proc Soc Exp Biol Med; 1993 Apr 01; 202(4):428-34. PubMed ID: 8456106 [Abstract] [Full Text] [Related]
34. Cl-HCO3 and Cl-OH exchanges mediate Cl uptake in apical membrane vesicles of rat distal colon. Rajendran VM, Binder HJ. Am J Physiol; 1993 May 01; 264(5 Pt 1):G874-9. PubMed ID: 8498514 [Abstract] [Full Text] [Related]
35. Pre-steady-state and steady-state function of the ileal brush border SO4(2-)-OH- exchanger. Maenz DD, Patience JF. Biochem Cell Biol; 1997 May 01; 75(3):229-36. PubMed ID: 9404642 [Abstract] [Full Text] [Related]
36. Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane. Walker JJ, Yan TS, Quamme GA. Am J Physiol; 1987 Feb 01; 252(2 Pt 2):F226-31. PubMed ID: 3812737 [Abstract] [Full Text] [Related]
37. Phosphate transport by isolated renal brush border vesicles. Hoffmann N, Thees M, Kinne R. Pflugers Arch; 1976 Mar 30; 362(2):147-56. PubMed ID: 4766 [Abstract] [Full Text] [Related]