These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 2679147

  • 1. Differential sensitivity to endothelin in canine arteries and veins.
    Miller VM, Komori K, Burnett JC, Vanhoutte PM.
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1127-31. PubMed ID: 2679147
    [Abstract] [Full Text] [Related]

  • 2. Modulation of contractions to and receptors for endothelins in canine veins.
    Miller VM, Michener SR.
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H345-50. PubMed ID: 7840282
    [Abstract] [Full Text] [Related]

  • 3. Selective production of endothelium-derived nitric oxide in canine femoral veins.
    Miller VM.
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H677-82. PubMed ID: 1679603
    [Abstract] [Full Text] [Related]

  • 4. Tissue concentrations of endothelins and functional effects of endothelin-receptor activation in human arteries and veins.
    Holm P, Franco-Cereceda A.
    J Thorac Cardiovasc Surg; 1996 Aug; 112(2):264-72. PubMed ID: 8751489
    [Abstract] [Full Text] [Related]

  • 5. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins.
    Lüscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, Siebenmann R, Turina M, Bühler FR.
    Circ Res; 1990 Apr; 66(4):1088-94. PubMed ID: 2180587
    [Abstract] [Full Text] [Related]

  • 6. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB, Bond R, Gao Y, Illiano S, Junquero DC, Mombouli JV, Nagao T, Smart F, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1993 Apr; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [Abstract] [Full Text] [Related]

  • 7. Effects of the Ca2+ antagonist RO 40-5967 on endothelium-dependent responses of isolated arteries.
    Boulanger CM, Nakashima M, Olmos L, Joly G, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1994 Jun; 23(6):869-76. PubMed ID: 7523777
    [Abstract] [Full Text] [Related]

  • 8. Reactivity of endothelin-1 on human and canine large veins compared with large arteries in vitro.
    Cocks TM, Faulkner NL, Sudhir K, Angus J.
    Eur J Pharmacol; 1989 Nov 14; 171(1):17-24. PubMed ID: 2693123
    [Abstract] [Full Text] [Related]

  • 9. Pertussis toxin reduces endothelium-dependent and independent responses to alpha-2- adrenergic stimulation in systemic canine arteries and veins.
    Miller VM, Flavahan NA, Vanhoutte PM.
    J Pharmacol Exp Ther; 1991 Apr 14; 257(1):290-3. PubMed ID: 1850467
    [Abstract] [Full Text] [Related]

  • 10. Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle.
    Liang CF, Au AL, Leung SW, Ng KF, Félétou M, Kwan YW, Man RY, Vanhoutte PM.
    J Pharmacol Exp Ther; 2010 Jul 14; 334(1):223-31. PubMed ID: 20332186
    [Abstract] [Full Text] [Related]

  • 11. Functional changes in canine saphenous veins after cryopreservation.
    Elmore JR, Gloviczki P, Brockbank KG, Miller VM.
    Int Angiol; 1992 Jul 14; 11(1):26-35. PubMed ID: 1522350
    [Abstract] [Full Text] [Related]

  • 12. Short-term treatment with transdermal nicotine affects the function of canine saphenous veins.
    Clouse WD, Rud KS, Hurt RD, Miller VM.
    Vasc Med; 2000 Jul 14; 5(2):75-82. PubMed ID: 10943583
    [Abstract] [Full Text] [Related]

  • 13. Pharmacology of pentoxifylline in isolated canine arteries and veins.
    Hoeffner U, Aarhus LL, Katusic ZS, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1989 Dec 14; 14(6):899-907. PubMed ID: 2481780
    [Abstract] [Full Text] [Related]

  • 14. The nitrate ester ITF 296 relaxes isolated canine arteries and veins.
    Desta B, Nakashima M, Vanhoutte PM, Boulanger CM.
    J Cardiovasc Pharmacol; 1995 Dec 14; 26 Suppl 4():S53-8. PubMed ID: 8839227
    [Abstract] [Full Text] [Related]

  • 15. Hyperpolarization and relaxation of canine vascular smooth muscle to vasoactive intestinal polypeptide.
    Nakashima M, Morrison KJ, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1997 Sep 14; 30(3):273-7. PubMed ID: 9300308
    [Abstract] [Full Text] [Related]

  • 16. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins?
    Miller VM, Vanhoutte PM.
    Am J Physiol; 1989 Dec 14; 257(6 Pt 2):H1910-6. PubMed ID: 2513730
    [Abstract] [Full Text] [Related]

  • 17. Endothelium-dependent relaxation and effects of prostacyclin, endothelin and platelet-activating factor in human hand veins and arteries.
    Arner M, Högestätt ED.
    Acta Physiol Scand; 1991 Jun 14; 142(2):165-72. PubMed ID: 1715111
    [Abstract] [Full Text] [Related]

  • 18. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium.
    De Mey JG, Vanhoutte PM.
    Circ Res; 1982 Oct 14; 51(4):439-47. PubMed ID: 7127680
    [Abstract] [Full Text] [Related]

  • 19. Autonomic modulation of contractions to endothelin-1 in canine coronary arteries.
    Aarnio P, McGregor CG, Miller V.
    Hypertension; 1993 May 14; 21(5):680-6. PubMed ID: 8491502
    [Abstract] [Full Text] [Related]

  • 20. Different effects of endothelin-1 on cAMP- and cGMP-mediated vascular relaxation in human arteries and veins: comparison with norepinephrine.
    Yang ZH, Bühler FR, Diederich D, Lüscher TF.
    J Cardiovasc Pharmacol; 1989 May 14; 13 Suppl 5():S129-31; discussion S142. PubMed ID: 2473286
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.