These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 26792119

  • 1. Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria.
    Li YL, Song HF, Zhang XY, Li DQ, Zhang TT, Ma EB, Zhang JZ.
    Insect Sci; 2016 Jun; 23(3):406-16. PubMed ID: 26792119
    [Abstract] [Full Text] [Related]

  • 2. Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation.
    Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y, Li S, Zhu KY, Zhang J.
    Insect Biochem Mol Biol; 2015 Mar; 58():46-54. PubMed ID: 25623241
    [Abstract] [Full Text] [Related]

  • 3. LmCht5-1 promotes pro-nymphal molting during locust embryonic development.
    Zhang T, Liu W, Li D, Gao L, Ma E, Zhu KY, Moussian B, Li S, Zhang J.
    Insect Biochem Mol Biol; 2018 Oct; 101():124-130. PubMed ID: 30196080
    [Abstract] [Full Text] [Related]

  • 4. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria.
    Zhao X, Qin Z, Liu W, Liu X, Moussian B, Ma E, Li S, Zhang J.
    Insect Biochem Mol Biol; 2018 Jan; 92():1-11. PubMed ID: 29113754
    [Abstract] [Full Text] [Related]

  • 5. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum.
    Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S.
    Insect Biochem Mol Biol; 2008 Apr; 38(4):467-77. PubMed ID: 18342251
    [Abstract] [Full Text] [Related]

  • 6. Nuclear receptor hormone receptor 39 is required for locust moulting by regulating the chitinase and carboxypeptidase genes.
    Zhao XM, Qin ZY, Zhang J, Yang Y, Jia P, Yang Q, Ma EB, Zhang JZ.
    Insect Mol Biol; 2019 Aug; 28(4):537-549. PubMed ID: 30719786
    [Abstract] [Full Text] [Related]

  • 7. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects.
    Chen W, Qu M, Zhou Y, Yang Q.
    J Biol Chem; 2018 Feb 23; 293(8):2652-2660. PubMed ID: 29317504
    [Abstract] [Full Text] [Related]

  • 8. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria.
    Liu X, Zhang H, Li S, Zhu KY, Ma E, Zhang J.
    Insect Biochem Mol Biol; 2012 Dec 23; 42(12):902-10. PubMed ID: 23006725
    [Abstract] [Full Text] [Related]

  • 9. Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut.
    Genta FA, Blanes L, Cristofoletti PT, do Lago CL, Terra WR, Ferreira C.
    Insect Biochem Mol Biol; 2006 Oct 23; 36(10):789-800. PubMed ID: 17027845
    [Abstract] [Full Text] [Related]

  • 10. LmCht5-1 and LmCht5-2 Promote the Degradation of Serosal and Pro-Nymphal Cuticles during Locust Embryonic Development.
    Zhang T, Huo Y, Dong Q, Liu W, Gao L, Zhou J, Li D, Zhang X, Zhang J, Zhang M.
    Biology (Basel); 2022 Dec 07; 11(12):. PubMed ID: 36552286
    [Abstract] [Full Text] [Related]

  • 11. Properties of catalytic, linker and chitin-binding domains of insect chitinase.
    Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ.
    Insect Biochem Mol Biol; 2003 Jun 07; 33(6):631-48. PubMed ID: 12770581
    [Abstract] [Full Text] [Related]

  • 12. Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli.
    Honda S, Wakita S, Sugahara Y, Kawakita M, Oyama F, Sakaguchi M.
    Appl Microbiol Biotechnol; 2016 Sep 07; 100(18):8031-41. PubMed ID: 27138200
    [Abstract] [Full Text] [Related]

  • 13. Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase.
    Zhang H, Huang X, Fukamizo T, Muthukrishnan S, Kramer KJ.
    Insect Biochem Mol Biol; 2002 Nov 07; 32(11):1477-88. PubMed ID: 12530215
    [Abstract] [Full Text] [Related]

  • 14. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria.
    Liu X, Li F, Li D, Ma E, Zhang W, Zhu KY, Zhang J.
    PLoS One; 2013 Nov 07; 8(8):e71970. PubMed ID: 23977188
    [Abstract] [Full Text] [Related]

  • 15. A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle.
    Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y.
    PLoS Genet; 2018 Mar 07; 14(3):e1007307. PubMed ID: 29590098
    [Abstract] [Full Text] [Related]

  • 16. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions.
    Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T.
    Int J Biol Macromol; 2016 Dec 07; 93(Pt A):1111-1117. PubMed ID: 27667544
    [Abstract] [Full Text] [Related]

  • 17. Expression and kinetic analysis of carboxylesterase LmCesA1 from Locusta migratoria.
    Yin F, Ma W, Li D, Zhang X, Zhang J.
    Biotechnol Lett; 2021 May 07; 43(5):995-1004. PubMed ID: 33511494
    [Abstract] [Full Text] [Related]

  • 18. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust.
    Song H, Zhang J, Li D, Cooper AMW, Silver K, Li T, Liu X, Ma E, Zhu KY, Zhang J.
    Insect Biochem Mol Biol; 2017 Jul 07; 86():68-80. PubMed ID: 28576656
    [Abstract] [Full Text] [Related]

  • 19. Characterization of an exochitinase from Epiphyas postvittana nucleopolyhedrovirus (family Baculoviridae).
    Young VL, Simpson RM, Ward VK.
    J Gen Virol; 2005 Dec 07; 86(Pt 12):3253-3261. PubMed ID: 16298970
    [Abstract] [Full Text] [Related]

  • 20. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity.
    Iseli B, Boller T, Neuhaus JM.
    Plant Physiol; 1993 Sep 07; 103(1):221-6. PubMed ID: 8208848
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.