These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


85 related items for PubMed ID: 26796132

  • 1. The Formation of Aberrant Collateral Vessels during Coronary Arteriogenesis in Dog Heart.
    Guan Y, Cai B, Liu Z, Ye F, Deng P, Cai WJ, Schaper J, Schaper W.
    Cells Tissues Organs; 2016; 201(2):118-29. PubMed ID: 26796132
    [Abstract] [Full Text] [Related]

  • 2. Remodeling of the vascular tunica media is essential for development of collateral vessels in the canine heart.
    Cai WJ, Kocsis E, Wu X, Rodríguez M, Luo X, Schaper W, Schaper J.
    Mol Cell Biochem; 2004 Sep; 264(1-2):201-10. PubMed ID: 15544049
    [Abstract] [Full Text] [Related]

  • 3. Expression of endothelial nitric oxide synthase in the vascular wall during arteriogenesis.
    Cai WJ, Kocsis E, Luo X, Schaper W, Schaper J.
    Mol Cell Biochem; 2004 Sep; 264(1-2):193-200. PubMed ID: 15544048
    [Abstract] [Full Text] [Related]

  • 4. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis.
    Cai W, Vosschulte R, Afsah-Hedjri A, Koltai S, Kocsis E, Scholz D, Kostin S, Schaper W, Schaper J.
    J Mol Cell Cardiol; 2000 Jun; 32(6):997-1011. PubMed ID: 10888253
    [Abstract] [Full Text] [Related]

  • 5. Vascular remodeling and altered protein expression during growth of coronary collateral arteries.
    Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J.
    J Mol Cell Cardiol; 1998 Nov; 30(11):2291-305. PubMed ID: 9925366
    [Abstract] [Full Text] [Related]

  • 6. Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis.
    Cai WJ, Kocsis E, Scholz D, Luo X, Schaper W, Schaper J.
    Mol Cell Biochem; 2004 Jul; 262(1-2):17-23. PubMed ID: 15532705
    [Abstract] [Full Text] [Related]

  • 7. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis.
    Wu S, Wu X, Zhu W, Cai WJ, Schaper J, Schaper W.
    Mol Cell Biochem; 2010 Oct; 343(1-2):223-9. PubMed ID: 20559689
    [Abstract] [Full Text] [Related]

  • 8. Remodeling of the adventitia during coronary arteriogenesis.
    Cai WJ, Koltai S, Kocsis E, Scholz D, Kostin S, Luo X, Schaper W, Schaper J.
    Am J Physiol Heart Circ Physiol; 2003 Jan; 284(1):H31-40. PubMed ID: 12388238
    [Abstract] [Full Text] [Related]

  • 9. Connexin37, not Cx40 and Cx43, is induced in vascular smooth muscle cells during coronary arteriogenesis.
    Cai WJ, Koltai S, Kocsis E, Scholz D, Schaper W, Schaper J.
    J Mol Cell Cardiol; 2001 May; 33(5):957-67. PubMed ID: 11343418
    [Abstract] [Full Text] [Related]

  • 10. Temporal expression of extracellular matrix metalloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion.
    Tyagi SC, Kumar S, Cassatt S, Parker JL.
    Can J Physiol Pharmacol; 1996 Aug; 74(8):983-95. PubMed ID: 8960389
    [Abstract] [Full Text] [Related]

  • 11. Migration of mononuclear cells expressing β-actin through the adventitia into media and intima in coronary arteriogenesis and venogenesis in ischemic myocardium.
    Uchida Y, Uchida Y, Maezawa Y, Maezawa Y, Tabata T.
    Int Heart J; 2012 Aug; 53(1):54-63. PubMed ID: 22398676
    [Abstract] [Full Text] [Related]

  • 12. Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis.
    Allahwala UK, Khachigian LM, Nour D, Ridiandres A, Billah M, Ward M, Weaver J, Bhindi R.
    Microvasc Res; 2020 Nov; 132():104058. PubMed ID: 32798552
    [Abstract] [Full Text] [Related]

  • 13. Blood flow to the heart from noncoronary arteries: an intriguing but challenging research field.
    Picichè M, Fadel E, Kingma JG, Dagenais F, Robillard J, Simard D, Voisine P.
    Cardiovasc Revasc Med; 2012 Nov; 13(1):25-9. PubMed ID: 22014590
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of TGF-beta1 signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through angiogenesis and reduction of apoptosis.
    Chen LL, Yin H, Huang J.
    Cardiovasc Pathol; 2007 Nov; 16(4):221-30. PubMed ID: 17637430
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Physiologic ischaemic training induces endothelial progenitor cell mobilization and myocardial angiogenesis via endothelial nitric oxide synthase related pathway in rabbits.
    Xiao M, Lu X, Li J, Li L, Li Y.
    J Cardiovasc Med (Hagerstown); 2014 Apr; 15(4):280-7. PubMed ID: 23507724
    [Abstract] [Full Text] [Related]

  • 17. Adventitial remodeling after coronary arterial injury.
    Shi Y, Pieniek M, Fard A, O'Brien J, Mannion JD, Zalewski A.
    Circulation; 1996 Jan 15; 93(2):340-8. PubMed ID: 8548908
    [Abstract] [Full Text] [Related]

  • 18. Bradycardia stimulates vascular growth during gradual coronary occlusion.
    Lamping KG, Zheng W, Xing D, Christensen LP, Martins J, Tomanek RJ.
    Arterioscler Thromb Vasc Biol; 2005 Oct 15; 25(10):2122-7. PubMed ID: 16051883
    [Abstract] [Full Text] [Related]

  • 19. Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a Swine endothelial dysfunction model.
    Ruel M, Wu GF, Khan TA, Voisine P, Bianchi C, Li J, Li J, Laham RJ, Sellke FW.
    Circulation; 2003 Sep 09; 108 Suppl 1():II335-40. PubMed ID: 12970256
    [Abstract] [Full Text] [Related]

  • 20. Coronary vascular remodeling and coronary resistance during chronic ischemia.
    White FC, Bloor CM.
    Am J Cardiovasc Pathol; 1992 Sep 09; 4(3):193-202. PubMed ID: 1298295
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.