These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
309 related items for PubMed ID: 26800981
1. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML). Gu L, Robinson RA. Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981 [Abstract] [Full Text] [Related]
2. High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT. Gu L, Robinson RA. Analyst; 2016 Jun 21; 141(12):3904-15. PubMed ID: 27152368 [Abstract] [Full Text] [Related]
3. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT. Gu L, Evans AR, Robinson RA. J Am Soc Mass Spectrom; 2015 Apr 21; 26(4):615-30. PubMed ID: 25588721 [Abstract] [Full Text] [Related]
4. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Anal Chem; 2013 Apr 02; 85(7):3774-80. PubMed ID: 23438843 [Abstract] [Full Text] [Related]
5. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L, Robinson RA. Proteomics Clin Appl; 2016 Dec 02; 10(12):1159-1177. PubMed ID: 27666938 [Abstract] [Full Text] [Related]
6. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Guo J, Gaffrey MJ, Su D, Liu T, Camp DG, Smith RD, Qian WJ. Nat Protoc; 2014 Jan 02; 9(1):64-75. PubMed ID: 24336471 [Abstract] [Full Text] [Related]
7. Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells. Albertolle ME, Glass SM, Trefts E, Guengerich FP. J Biol Chem; 2019 Apr 19; 294(16):6522-6530. PubMed ID: 30850396 [Abstract] [Full Text] [Related]
9. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications. Chan JCY, Zhou L, Chan ECY. Curr Protoc Protein Sci; 2015 Nov 02; 82():23.2.1-23.2.19. PubMed ID: 26521713 [Abstract] [Full Text] [Related]
14. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Lennicke C, Rahn J, Heimer N, Lichtenfels R, Wessjohann LA, Seliger B. Proteomics; 2016 Jan 02; 16(2):197-213. PubMed ID: 26508685 [Abstract] [Full Text] [Related]
17. Sulfhydryl-specific probe for monitoring protein redox sensitivity. Lee JJ, Ha S, Kim HJ, Ha HJ, Lee HY, Lee KJ. ACS Chem Biol; 2014 Dec 19; 9(12):2883-94. PubMed ID: 25354229 [Abstract] [Full Text] [Related]
19. Resin-Assisted Capture Coupled with Isobaric Tandem Mass Tag Labeling for Multiplexed Quantification of Protein Thiol Oxidation. Gaffrey MJ, Day NJ, Li X, Qian WJ. J Vis Exp; 2021 Jun 21; (172):. PubMed ID: 34223836 [Abstract] [Full Text] [Related]
20. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis. Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S. Free Radic Biol Med; 2021 Nov 20; 176():366-377. PubMed ID: 34619326 [Abstract] [Full Text] [Related] Page: [Next] [New Search]