These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


427 related items for PubMed ID: 26810040

  • 21. Genome-Wide Association Analysis Identified Quantitative Trait Loci (QTLs) Underlying Drought-Related Traits in Cultivated Peanut (Arachis hypogaea L.).
    Dang P, Patel J, Sorensen R, Lamb M, Chen CY.
    Genes (Basel); 2024 Jul 02; 15(7):. PubMed ID: 39062647
    [Abstract] [Full Text] [Related]

  • 22. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.).
    Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, Zhou X, Luo H, Liu N, Chen W, Lei Y, Pandey MK, Sudini H, Varshney RK, Liao B, Jiang H.
    BMC Genet; 2019 Mar 12; 20(1):32. PubMed ID: 30866805
    [Abstract] [Full Text] [Related]

  • 23. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea).
    Gangurde SS, Wang H, Yaduru S, Pandey MK, Fountain JC, Chu Y, Isleib T, Holbrook CC, Xavier A, Culbreath AK, Ozias-Akins P, Varshney RK, Guo B.
    Plant Biotechnol J; 2020 Jun 12; 18(6):1457-1471. PubMed ID: 31808273
    [Abstract] [Full Text] [Related]

  • 24. Identification of two major QTLs for pod shell thickness in peanut (Arachis hypogaea L.) using BSA-seq analysis.
    Liu H, Zheng Z, Sun Z, Qi F, Wang J, Wang M, Dong W, Cui K, Zhao M, Wang X, Zhang M, Wu X, Wu Y, Luo D, Huang B, Zhang Z, Cao G, Zhang X.
    BMC Genomics; 2024 Jan 16; 25(1):65. PubMed ID: 38229017
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.).
    Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS.
    PLoS One; 2017 Jan 16; 12(10):e0186113. PubMed ID: 29040293
    [Abstract] [Full Text] [Related]

  • 28. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6.
    Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao B, Jiang H.
    Theor Appl Genet; 2020 Apr 16; 133(4):1133-1148. PubMed ID: 31980836
    [Abstract] [Full Text] [Related]

  • 29. Quantative trait loci of seed traits for soybean in multiple environments.
    Che JY, Ding JJ, Liu CY, Xin DW, Jiang HW, Hu GH, Chen QS.
    Genet Mol Res; 2014 May 23; 13(2):4000-12. PubMed ID: 24938611
    [Abstract] [Full Text] [Related]

  • 30. An Overview of Mapping Quantitative Trait Loci in Peanut (Arachis hypogaea L.).
    Kassie FC, Nguepjop JR, Ngalle HB, Assaha DVM, Gessese MK, Abtew WG, Tossim HA, Sambou A, Seye M, Rami JF, Fonceka D, Bell JM.
    Genes (Basel); 2023 May 28; 14(6):. PubMed ID: 37372356
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea).
    Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J.
    Theor Appl Genet; 2020 Apr 28; 133(4):1201-1212. PubMed ID: 31974667
    [Abstract] [Full Text] [Related]

  • 35. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.).
    Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK.
    Theor Appl Genet; 2011 Apr 28; 122(6):1119-32. PubMed ID: 21191568
    [Abstract] [Full Text] [Related]

  • 36. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population.
    Raihan MS, Liu J, Huang J, Guo H, Pan Q, Yan J.
    Theor Appl Genet; 2016 Aug 28; 129(8):1465-77. PubMed ID: 27154588
    [Abstract] [Full Text] [Related]

  • 37. SNP genotyping reveals major QTLs for plant architectural traits between A-genome peanut wild species.
    Chopra R, Simpson CE, Hillhouse A, Payton P, Sharma J, Burow MD.
    Mol Genet Genomics; 2018 Dec 28; 293(6):1477-1491. PubMed ID: 30069598
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations.
    Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B.
    Theor Appl Genet; 2012 Mar 28; 124(4):653-64. PubMed ID: 22072100
    [Abstract] [Full Text] [Related]

  • 40. Identification of potential QTLs and genes associated with seed composition traits in peanut (Arachis hypogaea L.) using GWAS and RNA-Seq analysis.
    Zhang H, Li Wang M, Dang P, Jiang T, Zhao S, Lamb M, Chen C.
    Gene; 2021 Feb 15; 769():145215. PubMed ID: 33038422
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.