These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Estimation of mean glandular dose for contrast enhanced digital mammography: factors for use with the UK, European and IAEA breast dosimetry protocols. Dance DR, Young KC. Phys Med Biol; 2014 May 07; 59(9):2127-37. PubMed ID: 24699200 [Abstract] [Full Text] [Related]
23. Quantifying the effect of anode surface roughness on diagnostic x-ray spectra using Monte Carlo simulation. Mehranian A, Ay MR, Alam NR, Zaidi H. Med Phys; 2010 Feb 07; 37(2):742-52. PubMed ID: 20229884 [Abstract] [Full Text] [Related]
24. A model for the energy and angular distribution of x rays emitted from an x-ray tube. Part II. Validation of x-ray spectra from 20 to 300 kV. Omar A, Andreo P, Poludniowski G. Med Phys; 2020 Sep 07; 47(9):4005-4019. PubMed ID: 32593216 [Abstract] [Full Text] [Related]
25. Suitability of new anode materials in mammography: dose and subject contrast considerations using Monte Carlo simulation. Delis H, Spyrou G, Costaridou L, Tzanakos G, Panayiotakis G. Med Phys; 2006 Nov 07; 33(11):4221-35. PubMed ID: 17153401 [Abstract] [Full Text] [Related]
26. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations. Cunha DM, Tomal A, Poletti ME. Phys Med Biol; 2012 Apr 07; 57(7):1919-35. PubMed ID: 22421418 [Abstract] [Full Text] [Related]
27. X-ray spectral measurements for tungsten-anode from 20 to 49 kVp on a digital breast tomosynthesis system. Zhang D, Li X, Liu B. Med Phys; 2012 Jun 07; 39(6):3493-500. PubMed ID: 22755729 [Abstract] [Full Text] [Related]
28. Catalog of x-ray spectra of Mo-, Rh-, and W-anode-based x-ray tubes from 10 to 50 kV. Ketelhut S, Büermann L, Hilgers G. Phys Med Biol; 2021 May 24; 66(11):. PubMed ID: 33902019 [No Abstract] [Full Text] [Related]
32. Dual-energy contrast-enhanced digital mammography: Glandular dose estimation using a Monte Carlo code and voxel phantom. Tzamicha E, Yakoumakis E, Tsalafoutas IA, Dimitriadis A, Georgiou E, Tsapaki V, Chalazonitis A. Phys Med; 2015 Nov 24; 31(7):785-91. PubMed ID: 25900891 [Abstract] [Full Text] [Related]
33. Uncertainty estimation and statistical comparative methodology for mammography x-ray energy spectra. Santoro-Fernandes V, Santos JC, Mariano L, Vanin VR, Costa PR. Biomed Phys Eng Express; 2020 Apr 21; 6(3):035018. PubMed ID: 33438663 [Abstract] [Full Text] [Related]
34. A GATE Monte Carlo framework for dosimetric evaluation in mammography in an Algerian hospital. Bouchikhi BA, Benhalouche S, Ati M, Khelassi Toutaoui N, Arbor N, Bendella SA, Dib ASA, Tebboune A, Belbachir AH, Taleb Ben Diab E. Appl Radiat Isot; 2023 Jul 21; 197():110797. PubMed ID: 37043867 [Abstract] [Full Text] [Related]
35. A search for optimal x-ray spectra in iodine contrast media mammography. Ullman G, Sandborg M, Dance DR, Yaffe M, Alm Carlsson G. Phys Med Biol; 2005 Jul 07; 50(13):3143-52. PubMed ID: 15972986 [Abstract] [Full Text] [Related]
36. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models. Liaparinos P, Bliznakova K. Med Phys; 2012 Nov 07; 39(11):6638-51. PubMed ID: 23127058 [Abstract] [Full Text] [Related]
37. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system. Rodrigues L, Magalhaes LA, Braz D. Radiat Prot Dosimetry; 2015 Dec 07; 167(4):576-83. PubMed ID: 25480841 [Abstract] [Full Text] [Related]
38. Experimental investigation on the choice of the tungsten/rhodium anode/filter combination for an amorphous selenium-based digital mammography system. Toroi P, Zanca F, Young KC, van Ongeval C, Marchal G, Bosmans H. Eur Radiol; 2007 Sep 07; 17(9):2368-75. PubMed ID: 17268798 [Abstract] [Full Text] [Related]