These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
865 related items for PubMed ID: 26816341
1. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors. Tran VD, Nguyen DH, Nguyen VD, Nguyen VH. ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341 [Abstract] [Full Text] [Related]
2. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. Park S, An S, Mun Y, Lee C. ACS Appl Mater Interfaces; 2013 May 22; 5(10):4285-92. PubMed ID: 23627276 [Abstract] [Full Text] [Related]
3. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. Park S, An S, Ko H, Jin C, Lee C. ACS Appl Mater Interfaces; 2012 Jul 25; 4(7):3650-6. PubMed ID: 22746969 [Abstract] [Full Text] [Related]
4. Realization of ppb-Scale Toluene-Sensing Abilities with Pt-Functionalized SnO2-ZnO Core-Shell Nanowires. Kim JH, Kim SS. ACS Appl Mater Interfaces; 2015 Aug 12; 7(31):17199-208. PubMed ID: 26200934 [Abstract] [Full Text] [Related]
5. Attachment of metal nanoparticles to SnO2 nanowires for enhancement of gas sensing properties. Woo HW, Kwon YJ, Cho HY, Na HG. J Nanosci Nanotechnol; 2014 Nov 12; 14(11):8242-7. PubMed ID: 25958508 [Abstract] [Full Text] [Related]
6. Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors. Cho I, Kang K, Yang D, Yun J, Park I. ACS Appl Mater Interfaces; 2017 Aug 16; 9(32):27111-27119. PubMed ID: 28714311 [Abstract] [Full Text] [Related]
7. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. Trung do D, Hoa ND, Tong PV, Duy NV, Dao TD, Chung HV, Nagao T, Hieu NV. J Hazard Mater; 2014 Jan 30; 265():124-32. PubMed ID: 24355775 [Abstract] [Full Text] [Related]
8. One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Kaur N, Singh M, Comini E. Langmuir; 2020 Jun 16; 36(23):6326-6344. PubMed ID: 32453573 [Abstract] [Full Text] [Related]
9. Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. Van Toan N, Hung CM, Hoa ND, Van Duy N, Thi Thanh Le D, Thi Thu Hoa N, Viet NN, Phuoc PH, Van Hieu N. J Hazard Mater; 2021 Jun 15; 412():125181. PubMed ID: 33951858 [Abstract] [Full Text] [Related]
10. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Xue D, Wang Y, Cao J, Sun G, Zhang Z. Talanta; 2019 Jul 01; 199():603-611. PubMed ID: 30952304 [Abstract] [Full Text] [Related]
11. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Wang L, Li J, Wang Y, Yu K, Tang X, Zhang Y, Wang S, Wei C. Sci Rep; 2016 Oct 13; 6():35079. PubMed ID: 27734963 [Abstract] [Full Text] [Related]
12. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates. Ju DX, Xu HY, Qiu ZW, Zhang ZC, Xu Q, Zhang J, Wang JQ, Cao BQ. ACS Appl Mater Interfaces; 2015 Sep 02; 7(34):19163-71. PubMed ID: 26280916 [Abstract] [Full Text] [Related]
13. Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. Yuan KP, Zhu LY, Yang JH, Hang CZ, Tao JJ, Ma HP, Jiang AQ, Zhang DW, Lu HL. J Colloid Interface Sci; 2020 May 15; 568():81-88. PubMed ID: 32088454 [Abstract] [Full Text] [Related]
14. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces. Waclawik ER, Chang J, Ponzoni A, Concina I, Zappa D, Comini E, Motta N, Faglia G, Sberveglieri G. Beilstein J Nanotechnol; 2012 May 15; 3():368-77. PubMed ID: 23016141 [Abstract] [Full Text] [Related]
15. Multiarray Gas Sensors Using Ternary Combined Ti3C2Tx MXene-Based Nanocomposites. Rhyu H, Jang S, Shin JH, Kang MH, Song W, Lee SS, Lim J, Myung S. ACS Appl Mater Interfaces; 2024 Jun 05; 16(22):28808-28817. PubMed ID: 38775279 [Abstract] [Full Text] [Related]
16. Integration of VLS-Grown WO3 Nanowires into Sensing Devices for the Detection of H2S and O3. Kaur N, Zappa D, Poli N, Comini E. ACS Omega; 2019 Oct 08; 4(15):16336-16343. PubMed ID: 31616811 [Abstract] [Full Text] [Related]
17. Metal Oxide Nanowires Grown by a Vapor-Liquid-Solid Growth Mechanism for Resistive Gas-Sensing Applications: An Overview. Mirzaei A, Lee MH, Pawar KK, Bharath SP, Kim TU, Kim JY, Kim SS, Kim HW. Materials (Basel); 2023 Sep 15; 16(18):. PubMed ID: 37763510 [Abstract] [Full Text] [Related]
18. Highly Sensitive, Selective, Flexible and Scalable Room-Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers. Guo J, Li W, Zhao X, Hu H, Wang M, Luo Y, Xie D, Zhang Y, Zhu H. Molecules; 2021 Oct 27; 26(21):. PubMed ID: 34770884 [Abstract] [Full Text] [Related]
19. Temperature-Dependent Abnormal and Tunable p-n Response of Tungsten Oxide--Tin Oxide Based Gas Sensors. Li H, Xie W, Ye T, Liu B, Xiao S, Wang C, Wang Y, Li Q, Wang T. ACS Appl Mater Interfaces; 2015 Nov 11; 7(44):24887-94. PubMed ID: 26495911 [Abstract] [Full Text] [Related]
20. Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Zhang X, Sun J, Tang K, Wang H, Chen T, Jiang K, Zhou T, Quan H, Guo R. Microsyst Nanoeng; 2022 Nov 11; 8():67. PubMed ID: 35721374 [Abstract] [Full Text] [Related] Page: [Next] [New Search]