These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 26822224

  • 21. Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study.
    Pontrelli G, Halliday I, Spencer TJ, König CS, Collins MW.
    Comput Methods Biomech Biomed Engin; 2015; 18(4):351-61. PubMed ID: 23734750
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Flow in elliptical vessels calculated for a physiological waveform.
    Robertson MB, Köhler U, Hoskins PR, Marshall I.
    J Vasc Res; 2001; 38(1):73-82. PubMed ID: 11173997
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P, Bagchi P.
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [Abstract] [Full Text] [Related]

  • 26. Measurement of a velocity field in microvessels using a high resolution PIV technique.
    Sugii Y, Nishio S, Okamoto K.
    Ann N Y Acad Sci; 2002 Oct; 972():331-6. PubMed ID: 12496037
    [Abstract] [Full Text] [Related]

  • 27. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F, Ghista DN.
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [Abstract] [Full Text] [Related]

  • 28. Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations.
    Hossain MMN, Hu NW, Kazempour A, Murfee WL, Balogh P.
    Microcirculation; 2024 Oct; 31(7):e12875. PubMed ID: 38989907
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.
    Secomb TW, Hsu R, Pries AR.
    Biorheology; 2001 Oct; 38(2-3):143-50. PubMed ID: 11381171
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.
    McClatchey PM, Schafer M, Hunter KS, Reusch JE.
    Am J Physiol Heart Circ Physiol; 2016 Jul 01; 311(1):H168-76. PubMed ID: 27199117
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
    Bagchi P, Johnson PC, Popel AS.
    J Biomech Eng; 2005 Dec 01; 127(7):1070-80. PubMed ID: 16502649
    [Abstract] [Full Text] [Related]

  • 40. Pulsatile flow in a coronary artery using multiphase kinetic theory.
    Huang J, Lyczkowski RW, Gidaspow D.
    J Biomech; 2009 Apr 16; 42(6):743-54. PubMed ID: 19278682
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.