These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 26822953
1. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Maervoet VE, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. Microb Cell Fact; 2016 Jan 28; 15():23. PubMed ID: 26822953 [Abstract] [Full Text] [Related]
2. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out. Maervoet VE, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. Microb Cell Fact; 2014 May 17; 13():70. PubMed ID: 24885849 [Abstract] [Full Text] [Related]
5. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Zhuge B, Zhang C, Fang H, Zhuge J, Permaul K. Appl Microbiol Biotechnol; 2010 Aug 17; 87(6):2177-84. PubMed ID: 20499228 [Abstract] [Full Text] [Related]
7. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Hao J, Lin R, Zheng Z, Sun Y, Liu D. J Ind Microbiol Biotechnol; 2008 Dec 17; 35(12):1615-24. PubMed ID: 18685876 [Abstract] [Full Text] [Related]
9. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol. Zhou S, Lama S, Sankaranarayanan M, Park S. Bioresour Technol; 2019 Nov 17; 292():121933. PubMed ID: 31404755 [Abstract] [Full Text] [Related]
10. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. Hao J, Wang W, Tian J, Li J, Liu D. J Ind Microbiol Biotechnol; 2008 Jul 17; 35(7):735-41. PubMed ID: 18365261 [Abstract] [Full Text] [Related]
11. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum. Huang J, Wu Y, Wu W, Zhang Y, Liu D, Chen Z. Sci Rep; 2017 Feb 08; 7():42246. PubMed ID: 28176878 [Abstract] [Full Text] [Related]
12. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters. Maervoet VE, De Maeseneire SL, Soetaert WK, De Mey M. Bioprocess Biosyst Eng; 2014 Apr 08; 37(4):711-8. PubMed ID: 23996279 [Abstract] [Full Text] [Related]
14. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. Singh K, Ainala SK, Park S. Bioresour Technol; 2021 Oct 08; 338():125590. PubMed ID: 34298333 [Abstract] [Full Text] [Related]
19. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Malaoui H, Marczak R. Appl Microbiol Biotechnol; 2001 Mar 08; 55(2):226-33. PubMed ID: 11330719 [Abstract] [Full Text] [Related]
20. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Durgapal M, Kumar V, Yang TH, Lee HJ, Seung D, Park S. Bioresour Technol; 2014 May 08; 159():223-31. PubMed ID: 24657752 [Abstract] [Full Text] [Related] Page: [Next] [New Search]