These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 26824270

  • 1. Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States.
    Maimoun M, Madani K, Reinhart D.
    Sci Total Environ; 2016 Apr 15; 550():349-361. PubMed ID: 26824270
    [Abstract] [Full Text] [Related]

  • 2. The assessment of air emissions increase due to the collection of municipal solid waste with old collection vehicles: A case study of Ludbreg (Croatia).
    Radetić L, Vujević D, Premur V, Melnjak I, Anić Vučinić A.
    Waste Manag Res; 2016 Oct 15; 34(10):1047-1053. PubMed ID: 27443293
    [Abstract] [Full Text] [Related]

  • 3. Emissions from U.S. waste collection vehicles.
    Maimoun MA, Reinhart DR, Gammoh FT, McCauley Bush P.
    Waste Manag; 2013 May 15; 33(5):1079-89. PubMed ID: 23434127
    [Abstract] [Full Text] [Related]

  • 4. A life-cycle comparison of alternative automobile fuels.
    MacLean HL, Lave LB, Lankey R, Joshi S.
    J Air Waste Manag Assoc; 2000 Oct 15; 50(10):1769-79. PubMed ID: 11288305
    [Abstract] [Full Text] [Related]

  • 5. Life Cycle Analysis of Fischer-Tropsch Diesel Produced by Tri-Reforming and Fischer-Tropsch Synthesis (TriFTS) of Landfill Gas.
    Poddar TK, Zaimes GG, Kar S, Walker DM, Hawkins TR.
    Environ Sci Technol; 2023 Dec 05; 57(48):19602-19611. PubMed ID: 37955401
    [Abstract] [Full Text] [Related]

  • 6. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL, Lave LB, Lankey R, Joshi S.
    J Air Waste Manag Assoc; 2000 Oct 05; 50(10):1769-1779. PubMed ID: 28076232
    [Abstract] [Full Text] [Related]

  • 7. Electricity generation: options for reduction in carbon emissions.
    Whittington HW.
    Philos Trans A Math Phys Eng Sci; 2002 Aug 15; 360(1797):1653-68. PubMed ID: 12460490
    [Abstract] [Full Text] [Related]

  • 8. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.
    Yano J, Aoki T, Nakamura K, Yamada K, Sakai S.
    Waste Manag; 2015 Apr 15; 38():409-23. PubMed ID: 25670164
    [Abstract] [Full Text] [Related]

  • 9. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M, Wu Y, Wang M.
    Biotechnol Prog; 2006 Apr 15; 22(4):1012-24. PubMed ID: 16889378
    [Abstract] [Full Text] [Related]

  • 10. Long-term production technology mix of alternative fuels for road transport: A focus on Spain.
    Navas-Anguita Z, García-Gusano D, Iribarren D.
    Energy Convers Manag; 2020 Dec 15; 226():113498. PubMed ID: 33052157
    [Abstract] [Full Text] [Related]

  • 11. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management.
    Jovanovic S, Savic S, Jovicic N, Boskovic G, Djordjevic Z.
    Waste Manag Res; 2016 Sep 15; 34(9):884-95. PubMed ID: 27354012
    [Abstract] [Full Text] [Related]

  • 12. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed MA, Sutamihardja RT, Gregory R, Intergovernmental Panel on Climate Change (IPCC) Working Group III (Mitigation).
    Waste Manag Res; 2008 Feb 15; 26(1):11-32. PubMed ID: 18338699
    [Abstract] [Full Text] [Related]

  • 13. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.
    Zietsman J, Bari ME, Rand AJ, Gokhale B, Lord D, Kumar S.
    J Air Waste Manag Assoc; 2008 May 15; 58(5):613-9. PubMed ID: 18512437
    [Abstract] [Full Text] [Related]

  • 14. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N, Zhang H, Shao LM, Lü F, He PJ.
    J Environ Manage; 2013 Nov 15; 129():510-21. PubMed ID: 24018116
    [Abstract] [Full Text] [Related]

  • 15. Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis: a case study on alternative transportation fuels.
    Rogers K, Seager TP.
    Environ Sci Technol; 2009 Mar 15; 43(6):1718-23. PubMed ID: 19368162
    [Abstract] [Full Text] [Related]

  • 16. Comparision of two different ways of landfill gas utilization through greenhouse gas emission reductions analysis and financial analysis.
    Han H, Qian G, Long J, Li S.
    Waste Manag Res; 2009 Nov 15; 27(9):922-7. PubMed ID: 19767323
    [Abstract] [Full Text] [Related]

  • 17. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
    Hill J, Nelson E, Tilman D, Polasky S, Tiffany D.
    Proc Natl Acad Sci U S A; 2006 Jul 25; 103(30):11206-10. PubMed ID: 16837571
    [Abstract] [Full Text] [Related]

  • 18. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M, Grönman K, Horttanainen M.
    Waste Manag; 2015 Aug 25; 42():196-207. PubMed ID: 25936556
    [Abstract] [Full Text] [Related]

  • 19. The economic and environmental assessment of alternative marine fuels and nuclear energy utilization on a floating power plant.
    Yuksel O, Konur O, Pamık M, Bayraktar M.
    Environ Sci Pollut Res Int; 2024 Aug 25; 31(37):49780-49799. PubMed ID: 39083178
    [Abstract] [Full Text] [Related]

  • 20. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.
    Bender FA, Bosse T, Sawodny O.
    Waste Manag; 2014 Sep 25; 34(9):1577-83. PubMed ID: 24953314
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.