These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 26825819

  • 1. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.
    Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM.
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5773-9. PubMed ID: 26825819
    [Abstract] [Full Text] [Related]

  • 2. Pseudomonas aeruginosa biofilm disruption using microbial surfactants.
    Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM.
    J Appl Microbiol; 2016 Apr; 120(4):868-76. PubMed ID: 26742560
    [Abstract] [Full Text] [Related]

  • 3. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.
    Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM.
    FEMS Microbiol Lett; 2016 Jan; 363(2):fnv224. PubMed ID: 26598715
    [Abstract] [Full Text] [Related]

  • 4. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
    De Rienzo MA, Martin PJ.
    Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589
    [Abstract] [Full Text] [Related]

  • 5. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.
    Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ.
    N Biotechnol; 2015 Dec 25; 32(6):720-6. PubMed ID: 25738966
    [Abstract] [Full Text] [Related]

  • 6. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms.
    Irie Y, O'toole GA, Yuk MH.
    FEMS Microbiol Lett; 2005 Sep 15; 250(2):237-43. PubMed ID: 16098688
    [Abstract] [Full Text] [Related]

  • 7. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection.
    Chebbi A, Elshikh M, Haque F, Ahmed S, Dobbin S, Marchant R, Sayadi S, Chamkha M, Banat IM.
    J Basic Microbiol; 2017 May 15; 57(5):364-375. PubMed ID: 28156000
    [Abstract] [Full Text] [Related]

  • 8. The effect of sophorolipids against microbial biofilms on medical-grade silicone.
    Ceresa C, Fracchia L, Williams M, Banat IM, Díaz De Rienzo MA.
    J Biotechnol; 2020 Feb 10; 309():34-43. PubMed ID: 31887325
    [Abstract] [Full Text] [Related]

  • 9. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.
    Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald PJ.
    PLoS One; 2015 Feb 10; 10(6):e0131806. PubMed ID: 26125555
    [Abstract] [Full Text] [Related]

  • 10. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ, Tolker-Nielsen T.
    J Bacteriol; 2007 Mar 10; 189(6):2531-9. PubMed ID: 17220224
    [Abstract] [Full Text] [Related]

  • 11. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk.
    Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDÁ, Hübner SO, Fischer G.
    Microb Pathog; 2017 Nov 10; 112():57-62. PubMed ID: 28943153
    [Abstract] [Full Text] [Related]

  • 12. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing.
    Chino T, Nukui Y, Morishita Y, Moriya K.
    Antimicrob Resist Infect Control; 2017 Nov 10; 6():122. PubMed ID: 29214017
    [Abstract] [Full Text] [Related]

  • 13. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants.
    E Silva SS, Carvalho JWP, Aires CP, Nitschke M.
    J Dairy Sci; 2017 Oct 10; 100(10):7864-7873. PubMed ID: 28822551
    [Abstract] [Full Text] [Related]

  • 14. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control?
    Nickzad A, Déziel E.
    Lett Appl Microbiol; 2014 May 10; 58(5):447-53. PubMed ID: 24372465
    [Abstract] [Full Text] [Related]

  • 15. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant.
    Venkata Nancharaiah Y, Reddy GK, Lalithamanasa P, Venugopalan VP.
    Biofouling; 2012 May 10; 28(10):1141-9. PubMed ID: 23092364
    [Abstract] [Full Text] [Related]

  • 16. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
    Khalid HF, Tehseen B, Sarwar Y, Hussain SZ, Khan WS, Raza ZA, Bajwa SZ, Kanaras AG, Hussain I, Rehman A.
    J Hazard Mater; 2019 Feb 15; 364():441-448. PubMed ID: 30384254
    [Abstract] [Full Text] [Related]

  • 17. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and N-Acetylcysteine Against Biofilms of Five Common Pathogens.
    Shen Y, Li P, Chen X, Zou Y, Li H, Yuan G, Hu H.
    Microb Drug Resist; 2020 Mar 15; 26(3):290-299. PubMed ID: 31211651
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus.
    Anju VT, Paramanantham P, Siddhardha B, Sruthil Lal SB, Sharan A, Alyousef AA, Arshad M, Syed A.
    Int J Nanomedicine; 2019 Mar 15; 14():3861-3874. PubMed ID: 31213806
    [No Abstract] [Full Text] [Related]

  • 20. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms.
    Lefebvre E, Vighetto C, Di Martino P, Larreta Garde V, Seyer D.
    Int J Antimicrob Agents; 2016 Aug 15; 48(2):181-8. PubMed ID: 27424598
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.