These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


758 related items for PubMed ID: 26827140

  • 21. A Series of New Hydrazone Derivatives: Synthesis, Molecular Docking and Anticholinesterase Activity Studies.
    Bozbey İ, Özdemir Z, Uslu H, Özçelik AB, Şenol FS, Orhan İE, Uysal M.
    Mini Rev Med Chem; 2020; 20(11):1042-1060. PubMed ID: 31660824
    [Abstract] [Full Text] [Related]

  • 22. Design, synthesis and evaluation of difunctionalized 4-hydroxybenzaldehyde derivatives as novel cholinesterase inhibitors.
    Yu L, Cao R, Yi W, Yan Q, Chen Z, Ma L, Song H.
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1216-20. PubMed ID: 20823602
    [Abstract] [Full Text] [Related]

  • 23. 2-Phenylbenzofuran derivatives as butyrylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling.
    Delogu GL, Matos MJ, Fanti M, Era B, Medda R, Pieroni E, Fais A, Kumar A, Pintus F.
    Bioorg Med Chem Lett; 2016 May 01; 26(9):2308-13. PubMed ID: 26995529
    [Abstract] [Full Text] [Related]

  • 24. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer's Activity Profile.
    Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ.
    Molecules; 2022 Feb 04; 27(3):. PubMed ID: 35164325
    [Abstract] [Full Text] [Related]

  • 25. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
    Orhan IE, Jedrejek D, Senol FS, Salmas RE, Durdagi S, Kowalska I, Pecio L, Oleszek W.
    Phytomedicine; 2018 Mar 15; 42():25-33. PubMed ID: 29655693
    [Abstract] [Full Text] [Related]

  • 26. Synthesis, biochemical evaluation, and molecular modeling studies of aryl and arylalkyl di-n-butyl phosphates, effective butyrylcholinesterase inhibitors.
    Nakayama K, Schwans JP, Sorin EJ, Tran T, Gonzalez J, Arteaga E, McCoy S, Alvarado W.
    Bioorg Med Chem; 2017 Jun 15; 25(12):3171-3181. PubMed ID: 28416102
    [Abstract] [Full Text] [Related]

  • 27. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A, Zehra ST, Shah SJ, Khan KM, Alharthy RD, Furtmann N, Bajorath J, Tahir MN, Iqbal J.
    Chem Biol Drug Des; 2015 Nov 15; 86(5):1115-20. PubMed ID: 25951978
    [Abstract] [Full Text] [Related]

  • 28. Biological evaluation and docking studies of some benzoxazole derivatives as inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Temiz-Arpaci O, Arisoy M, Sac D, Doganc F, Tasci M, Senol FS, Orhan IE.
    Z Naturforsch C J Biosci; 2016 Nov 01; 71(11-12):409-413. PubMed ID: 27505087
    [Abstract] [Full Text] [Related]

  • 29. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.
    Vitorović-Todorović MD, Koukoulitsa C, Juranić IO, Mandić LM, Drakulić BJ.
    Eur J Med Chem; 2014 Jun 23; 81():158-75. PubMed ID: 24836068
    [Abstract] [Full Text] [Related]

  • 30. Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1H)-one derivatives as inhibitors of cholinesterases.
    Sarfraz M, Sultana N, Rashid U, Akram MS, Sadiq A, Tariq MI.
    Bioorg Chem; 2017 Feb 23; 70():237-244. PubMed ID: 28126287
    [Abstract] [Full Text] [Related]

  • 31. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors.
    Gao CZ, Dong W, Cui ZW, Yuan Q, Hu XM, Wu QM, Han X, Xu Y, Min ZL.
    J Enzyme Inhib Med Chem; 2019 Dec 23; 34(1):150-162. PubMed ID: 30427217
    [Abstract] [Full Text] [Related]

  • 32. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS, Khan SU, Ejaz SA, Afridi S, Rizvi SUF, Najam-Ul-Haq M, Iqbal J.
    Biochem Biophys Res Commun; 2017 Jan 22; 482(4):615-624. PubMed ID: 27865835
    [Abstract] [Full Text] [Related]

  • 33. Identification of Compounds for Butyrylcholinesterase Inhibition.
    Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, Huang R, Xia M.
    SLAS Discov; 2021 Dec 22; 26(10):1355-1364. PubMed ID: 34269114
    [Abstract] [Full Text] [Related]

  • 34. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease.
    Makhaeva GF, Lushchekina SV, Boltneva NP, Sokolov VB, Grigoriev VV, Serebryakova OG, Vikhareva EA, Aksinenko AY, Barreto GE, Aliev G, Bachurin SO.
    Sci Rep; 2015 Aug 18; 5():13164. PubMed ID: 26281952
    [Abstract] [Full Text] [Related]

  • 35. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU, Sadiq A, Murtaza S, Rafique H, Zafar MN, Riaz T, Khan BA, Hameed A, Khan KM.
    Bioorg Med Chem; 2017 Jan 01; 25(1):100-106. PubMed ID: 27780618
    [Abstract] [Full Text] [Related]

  • 36. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.
    Kia Y, Osman H, Kumar RS, Basiri A, Murugaiyah V.
    Bioorg Med Chem; 2014 Feb 15; 22(4):1318-28. PubMed ID: 24461561
    [Abstract] [Full Text] [Related]

  • 37. Ionic liquid-enabled synthesis, cholinesterase inhibitory activity, and molecular docking study of highly functionalized tetrasubstituted pyrrolidines.
    Kumar RS, Almansour AI, Arumugam N, Althomili DMQ, Altaf M, Basiri A, D K, Sai Manohar T, S V.
    Bioorg Chem; 2018 Apr 15; 77():263-268. PubMed ID: 29421701
    [Abstract] [Full Text] [Related]

  • 38. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU, Sadiq A, Ashraf J, Zafar MN, Sumrra SH, Tariq R, Mumtaz A, Javid A, Khan BA, Ali A, Javed CO.
    Bioorg Chem; 2019 Oct 15; 91():103124. PubMed ID: 31319297
    [Abstract] [Full Text] [Related]

  • 39. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects.
    Makhaeva GF, Radchenko EV, Palyulin VA, Rudakova EV, Aksinenko AY, Sokolov VB, Zefirov NS, Richardson RJ.
    Chem Biol Interact; 2013 Mar 25; 203(1):231-7. PubMed ID: 23123251
    [Abstract] [Full Text] [Related]

  • 40. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields.
    Vitorović-Todorović MD, Juranić IO, Mandić LM, Drakulić BJ.
    Bioorg Med Chem; 2010 Feb 25; 18(3):1181-93. PubMed ID: 20061157
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.