These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
669 related items for PubMed ID: 26829388
1. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Eichel K, Jullié D, von Zastrow M. Nat Cell Biol; 2016 Mar; 18(3):303-10. PubMed ID: 26829388 [Abstract] [Full Text] [Related]
3. β-arrestins and G protein-coupled receptor trafficking. Tian X, Kang DS, Benovic JL. Handb Exp Pharmacol; 2014 Apr 04; 219():173-86. PubMed ID: 24292830 [Abstract] [Full Text] [Related]
4. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. J Biol Chem; 1997 Oct 24; 272(43):27005-14. PubMed ID: 9341139 [Abstract] [Full Text] [Related]
5. Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. Hamdan FF, Rochdi MD, Breton B, Fessart D, Michaud DE, Charest PG, Laporte SA, Bouvier M. J Biol Chem; 2007 Oct 05; 282(40):29089-100. PubMed ID: 17675294 [Abstract] [Full Text] [Related]
6. Platelet-activating factor-induced clathrin-mediated endocytosis requires beta-arrestin-1 recruitment and activation of the p38 MAPK signalosome at the plasma membrane for actin bundle formation. McLaughlin NJ, Banerjee A, Kelher MR, Gamboni-Robertson F, Hamiel C, Sheppard FR, Moore EE, Silliman CC. J Immunol; 2006 Jun 01; 176(11):7039-50. PubMed ID: 16709866 [Abstract] [Full Text] [Related]
7. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Goodman OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL. Nature; 1996 Oct 03; 383(6599):447-50. PubMed ID: 8837779 [Abstract] [Full Text] [Related]
8. Activation of MAPK by TRH requires clathrin-dependent endocytosis and PKC but not receptor interaction with beta-arrestin or receptor endocytosis. Smith J, Yu R, Hinkle PM. Mol Endocrinol; 2001 Sep 03; 15(9):1539-48. PubMed ID: 11518803 [Abstract] [Full Text] [Related]
9. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM. J Biol Chem; 2003 Feb 21; 278(8):6258-67. PubMed ID: 12473660 [Abstract] [Full Text] [Related]
10. β-arrestin-dependent PI(4,5)P2 synthesis boosts GPCR endocytosis. Jung SR, Jiang Y, Seo JB, Chiu DT, Hille B, Koh DS. Proc Natl Acad Sci U S A; 2021 Apr 27; 118(17):. PubMed ID: 33879605 [Abstract] [Full Text] [Related]
11. beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. Laporte SA, Miller WE, Kim KM, Caron MG. J Biol Chem; 2002 Mar 15; 277(11):9247-54. PubMed ID: 11777907 [Abstract] [Full Text] [Related]
12. c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Waters CM, Connell MC, Pyne S, Pyne NJ. Cell Signal; 2005 Feb 15; 17(2):263-77. PubMed ID: 15494217 [Abstract] [Full Text] [Related]
13. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Paradis JS, Ly S, Blondel-Tepaz É, Galan JA, Beautrait A, Scott MG, Enslen H, Marullo S, Roux PP, Bouvier M. Proc Natl Acad Sci U S A; 2015 Sep 15; 112(37):E5160-8. PubMed ID: 26324936 [Abstract] [Full Text] [Related]
14. Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling. Barsi-Rhyne B, Manglik A, von Zastrow M. Elife; 2022 Oct 17; 11():. PubMed ID: 36250629 [Abstract] [Full Text] [Related]
15. Catalytic activation of β-arrestin by GPCRs. Eichel K, Jullié D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO, von Zastrow M. Nature; 2018 May 17; 557(7705):381-386. PubMed ID: 29720660 [Abstract] [Full Text] [Related]
16. Arrestin-Dependent and -Independent Internalization of G Protein-Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling. Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC. Mol Pharmacol; 2021 Apr 17; 99(4):242-255. PubMed ID: 33472843 [Abstract] [Full Text] [Related]
17. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Luttrell LM, Lefkowitz RJ. J Cell Sci; 2002 Feb 01; 115(Pt 3):455-65. PubMed ID: 11861753 [Abstract] [Full Text] [Related]
18. β-Arrestins and G protein-coupled receptor trafficking. Kang DS, Tian X, Benovic JL. Methods Enzymol; 2013 Feb 01; 521():91-108. PubMed ID: 23351735 [Abstract] [Full Text] [Related]
19. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. J Biol Chem; 1999 Nov 05; 274(45):32248-57. PubMed ID: 10542263 [Abstract] [Full Text] [Related]
20. Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ. Science; 2004 Dec 24; 306(5705):2257-60. PubMed ID: 15618519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]