These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


522 related items for PubMed ID: 26836249

  • 1. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z, Bertolini S, Balbuena PB, Mukherjee PP.
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [Abstract] [Full Text] [Related]

  • 2. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C, Manthiram A.
    J Phys Chem Lett; 2014 Aug 07; 5(15):2522-7. PubMed ID: 26277939
    [Abstract] [Full Text] [Related]

  • 3. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S, Chen Y, Xu Y, Yi F, Zhu Y, Liu Y, Yang J, Wang C.
    ACS Nano; 2013 Dec 23; 7(12):10995-1003. PubMed ID: 24251957
    [Abstract] [Full Text] [Related]

  • 4. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C, Klein M, Manthiram A.
    J Phys Chem Lett; 2014 Nov 20; 5(22):3986-91. PubMed ID: 26276482
    [Abstract] [Full Text] [Related]

  • 5. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y, Zu C, Manthiram A.
    J Am Chem Soc; 2013 Dec 04; 135(48):18044-7. PubMed ID: 24245559
    [Abstract] [Full Text] [Related]

  • 6. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z, Zhang S, Terada S, Ma X, Ikeda K, Kamei Y, Zhang C, Dokko K, Watanabe M.
    ACS Appl Mater Interfaces; 2016 Jun 29; 8(25):16053-62. PubMed ID: 27282172
    [Abstract] [Full Text] [Related]

  • 7. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.
    Liu Z, Mukherjee PP.
    ACS Appl Mater Interfaces; 2017 Feb 15; 9(6):5263-5271. PubMed ID: 28112507
    [Abstract] [Full Text] [Related]

  • 8. Critical Role of Surface Defects in the Controllable Deposition of Li2S on Graphene: From Molecule to Crystallite.
    Su F, Yi Z, Xie L, Dai L, Dong N, Zhang C, Ling G, Han P, Chen C.
    ACS Appl Mater Interfaces; 2020 Nov 25; 12(47):53435-53445. PubMed ID: 33190478
    [Abstract] [Full Text] [Related]

  • 9. Critical Role of Anion Donicity in Li2S Deposition and Sulfur Utilization in Li-S Batteries.
    Yang B, Jiang H, Zhou Y, Liang Z, Zhao T, Lu YC.
    ACS Appl Mater Interfaces; 2019 Jul 24; 11(29):25940-25948. PubMed ID: 31246006
    [Abstract] [Full Text] [Related]

  • 10. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries.
    Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y.
    Proc Natl Acad Sci U S A; 2017 Jan 31; 114(5):840-845. PubMed ID: 28096362
    [Abstract] [Full Text] [Related]

  • 11. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.
    Timoshevskii V, Feng Z, Bevan KH, Zaghib K.
    ACS Appl Mater Interfaces; 2015 Aug 26; 7(33):18362-8. PubMed ID: 26237114
    [Abstract] [Full Text] [Related]

  • 12. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE, Balbuena PB.
    Phys Chem Chem Phys; 2017 Nov 22; 19(45):30861-30873. PubMed ID: 29135003
    [Abstract] [Full Text] [Related]

  • 13. All-Solid-State Thin-Film Lithium-Sulfur Batteries.
    Deng R, Ke B, Xie Y, Cheng S, Zhang C, Zhang H, Lu B, Wang X.
    Nanomicro Lett; 2023 Mar 27; 15(1):73. PubMed ID: 36971905
    [Abstract] [Full Text] [Related]

  • 14. Paving the way for using Li₂S batteries.
    Xu R, Zhang X, Yu C, Ren Y, Li JC, Belharouak I.
    ChemSusChem; 2014 Sep 27; 7(9):2457-60. PubMed ID: 25044568
    [Abstract] [Full Text] [Related]

  • 15. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.
    Chen L, Liu Y, Zhang F, Liu C, Shaw LL.
    ACS Appl Mater Interfaces; 2015 Nov 25; 7(46):25748-56. PubMed ID: 26529481
    [Abstract] [Full Text] [Related]

  • 16. From Metal-Organic Framework to Li2S@C-Co-N Nanoporous Architecture: A High-Capacity Cathode for Lithium-Sulfur Batteries.
    He J, Chen Y, Lv W, Wen K, Xu C, Zhang W, Li Y, Qin W, He W.
    ACS Nano; 2016 Dec 27; 10(12):10981-10987. PubMed ID: 28024364
    [Abstract] [Full Text] [Related]

  • 17. Structure-Property of Lithium-Sulfur Nanoparticles via Molecular Dynamics Simulation.
    Li Y, Romero NA, Lau KC.
    ACS Appl Mater Interfaces; 2018 Oct 31; 10(43):37575-37585. PubMed ID: 30298723
    [Abstract] [Full Text] [Related]

  • 18. Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces.
    Liu Z, Hubble D, Balbuena PB, Mukherjee PP.
    Phys Chem Chem Phys; 2015 Apr 14; 17(14):9032-9. PubMed ID: 25752296
    [Abstract] [Full Text] [Related]

  • 19. Insight into sulfur reactions in Li-S batteries.
    Xu R, Belharouak I, Zhang X, Chamoun R, Yu C, Ren Y, Nie A, Shahbazian-Yassar R, Lu J, Li JC, Amine K.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21938-45. PubMed ID: 25425055
    [Abstract] [Full Text] [Related]

  • 20. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.
    Liu S, Li GR, Gao XP.
    ACS Appl Mater Interfaces; 2016 Mar 24; 8(12):7783-9. PubMed ID: 26981849
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.