These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
794 related items for PubMed ID: 26838839
1. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A. Mater Sci Eng C Mater Biol Appl; 2016 Apr 01; 61():180-9. PubMed ID: 26838839 [Abstract] [Full Text] [Related]
2. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HV, Canali C, Dufva M, Emnéus J, Wolff A. Mater Sci Eng C Mater Biol Appl; 2015 Oct 01; 55():569-78. PubMed ID: 26117791 [Abstract] [Full Text] [Related]
3. Fabrication of dual-pore scaffolds using SLUP (salt leaching using powder) and WNM (wire-network molding) techniques. Cho YS, Hong MW, Kim SY, Lee SJ, Lee JH, Kim YY, Cho YS. Mater Sci Eng C Mater Biol Appl; 2014 Dec 01; 45():546-55. PubMed ID: 25491863 [Abstract] [Full Text] [Related]
4. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Lee KW, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ. Tissue Eng; 2006 Oct 01; 12(10):2801-11. PubMed ID: 17518649 [Abstract] [Full Text] [Related]
5. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P. Biofabrication; 2013 Dec 01; 5(4):045004. PubMed ID: 24192056 [Abstract] [Full Text] [Related]
6. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. J Biomater Sci Polym Ed; 2017 Nov 01; 28(16):1797-1825. PubMed ID: 28707508 [Abstract] [Full Text] [Related]
7. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H, Mohamed MGA, Montazeri MM, Kheiri S, Milani AS, Kim K, Hoorfar M. Acta Biomater; 2019 Sep 15; 96():149-160. PubMed ID: 31252172 [Abstract] [Full Text] [Related]
8. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE, Hui Z, Yao Y, Pang Y. Int J Mol Sci; 2020 Jan 02; 21(1):. PubMed ID: 31906530 [Abstract] [Full Text] [Related]
12. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography. Prasopthum A, Shakesheff KM, Yang J. Biofabrication; 2018 Jan 12; 10(2):025002. PubMed ID: 29235445 [Abstract] [Full Text] [Related]
13. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL, Cai YL, Guo YL, Fuh JY, Sun J, Hong GS, Lam RN, Wong YS, Wang W, Tay BY, Thian ES. J Biomed Mater Res B Appl Biomater; 2014 May 12; 102(4):651-8. PubMed ID: 24155124 [Abstract] [Full Text] [Related]
16. Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold. Cho YS, Hong MW, Quan M, Kim SY, Lee SH, Lee SJ, Kim YY, Cho YS. J Biomed Mater Res A; 2017 Dec 12; 105(12):3432-3444. PubMed ID: 28879670 [Abstract] [Full Text] [Related]