These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 26848844
1. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus. Jugé L, Pong AC, Bongers A, Sinkus R, Bilston LE, Cheng S. PLoS One; 2016; 11(2):e0148652. PubMed ID: 26848844 [Abstract] [Full Text] [Related]
2. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats. Pong AC, Jugé L, Bilston LE, Cheng S. PLoS One; 2017; 12(8):e0182808. PubMed ID: 28837671 [Abstract] [Full Text] [Related]
3. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus. Aojula A, Botfield H, McAllister JP, Gonzalez AM, Abdullah O, Logan A, Sinclair A. Fluids Barriers CNS; 2016 May 31; 13(1):9. PubMed ID: 27246837 [Abstract] [Full Text] [Related]
4. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Lopes Lda S, Slobodian I, Del Bigio MR. Exp Neurol; 2009 Sep 31; 219(1):187-96. PubMed ID: 19460371 [Abstract] [Full Text] [Related]
5. Gray matter metabolism in acute and chronic hydrocephalus. Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O. Neuroscience; 2009 Mar 17; 159(2):570-7. PubMed ID: 19171182 [Abstract] [Full Text] [Related]
6. Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus. Del Bigio MR, Slobodian I, Schellenberg AE, Buist RJ, Kemp-Buors TL. Fluids Barriers CNS; 2011 Aug 11; 8():22. PubMed ID: 21834998 [Abstract] [Full Text] [Related]
7. In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Braun KP, de Graaf RA, Vandertop WP, Gooskens RH, Tulleken KA, Nicolay K. Magn Reson Med; 1998 Dec 11; 40(6):832-9. PubMed ID: 9840827 [Abstract] [Full Text] [Related]
8. Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Eskandari R, Abdullah O, Mason C, Lloyd KE, Oeschle AN, McAllister JP. Childs Nerv Syst; 2014 Oct 11; 30(10):1651-61. PubMed ID: 25070594 [Abstract] [Full Text] [Related]
9. Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury. Mohamed AZ, Corrigan F, Collins-Praino LE, Plummer SL, Soni N, Nasrallah FA. Neuroimage Clin; 2020 Oct 11; 25():102136. PubMed ID: 31865019 [Abstract] [Full Text] [Related]
10. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Di Curzio DL, Buist RJ, Del Bigio MR. Exp Neurol; 2013 Oct 11; 248():112-28. PubMed ID: 23769908 [Abstract] [Full Text] [Related]
11. Brain damage in neonatal rats following kaolin induction of hydrocephalus. Khan OH, Enno TL, Del Bigio MR. Exp Neurol; 2006 Aug 11; 200(2):311-20. PubMed ID: 16624304 [Abstract] [Full Text] [Related]
12. Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. Del Bigio MR, Kanfer JN, Zhang YW. J Neuropathol Exp Neurol; 1997 Sep 11; 56(9):1053-66. PubMed ID: 9291946 [Abstract] [Full Text] [Related]
13. White and gray matter integrity evaluated by MRI-DTI can serve as noninvasive and reliable indicators of structural and functional alterations in chronic neurotrauma. Wang LW, Cho KH, Chao PY, Kuo LW, Chiang CW, Chao CM, Lin MT, Chang CP, Lin HJ, Chio CC. Sci Rep; 2024 Mar 27; 14(1):7244. PubMed ID: 38538745 [Abstract] [Full Text] [Related]
14. Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Yuan W, McAllister JP, Lindquist DM, Gill N, Holland SK, Henkel D, Rajagopal A, Mangano FT. Childs Nerv Syst; 2012 Jan 27; 28(1):47-54. PubMed ID: 21994049 [Abstract] [Full Text] [Related]
15. The combined use of DTI and MR elastography for monitoring microstructural changes in the developing brain of a neurodevelopmental disorder model: Poly (I:C)-induced maternal immune-activated rats. Liu L, Bongers A, Bilston LE, Jugé L. PLoS One; 2023 Jan 27; 18(1):e0280498. PubMed ID: 36638122 [Abstract] [Full Text] [Related]
16. Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Garcia-Bonilla M, Castaneyra-Ruiz L, Zwick S, Talcott M, Otun A, Isaacs AM, Morales DM, Limbrick DD, McAllister JP. Fluids Barriers CNS; 2022 Feb 22; 19(1):17. PubMed ID: 35193620 [Abstract] [Full Text] [Related]
17. Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. McAllister JP, Cohen MI, O'Mara KA, Johnson MH. Neurosurgery; 1991 Sep 22; 29(3):329-40. PubMed ID: 1922699 [Abstract] [Full Text] [Related]
18. Changes of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the model of experimental acute hydrocephalus in rabbits. Shevtsov MA, Senkevich KA, Kim AV, Gerasimova KA, Trofimova TN, Kataeva GV, Medvedev SV, Smirnova OI, Savintseva ZI, Martynova MG, Bystrova OA, Pitkin E, Yukina GY, Khachatryan WA. Acta Neurochir (Wien); 2015 Apr 22; 157(4):689-98; discussion 698. PubMed ID: 25591802 [Abstract] [Full Text] [Related]
19. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging. Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Neurobiol Aging; 2014 Oct 22; 35(10):2203-16. PubMed ID: 24910392 [Abstract] [Full Text] [Related]
20. Magnetic resonance imaging study of extracellular fluid tracer movement in brains of immature rats with hydrocephalus. Shoesmith CL, Buist R, Del Bigio MR. Neurol Res; 2000 Jan 22; 22(1):111-6. PubMed ID: 10672588 [Abstract] [Full Text] [Related] Page: [Next] [New Search]