These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
325 related items for PubMed ID: 26848948
1. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. Sainz F, Navarro D, Mateo E, Torija MJ, Mas A. Int J Food Microbiol; 2016 Apr 02; 222():40-7. PubMed ID: 26848948 [Abstract] [Full Text] [Related]
2. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans. Dai L, Jiang W, Jia R, Zhou X, Xu Y. Bioresour Technol; 2022 Mar 02; 348():126811. PubMed ID: 35131459 [Abstract] [Full Text] [Related]
3. New developments in oxidative fermentation. Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K. Appl Microbiol Biotechnol; 2003 Feb 02; 60(6):643-53. PubMed ID: 12664142 [Abstract] [Full Text] [Related]
4. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H. Appl Microbiol Biotechnol; 2005 Mar 02; 66(6):668-74. PubMed ID: 15735967 [Abstract] [Full Text] [Related]
5. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile. Ordóñez JL, Sainz F, Callejón RM, Troncoso AM, Torija MJ, García-Parrilla MC. Food Chem; 2015 Jul 01; 178():221-8. PubMed ID: 25704705 [Abstract] [Full Text] [Related]
6. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H. Biotechnol J; 2006 May 01; 1(5):556-63. PubMed ID: 16892291 [Abstract] [Full Text] [Related]
7. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains. Sainz F, Jesús Torija M, Matsutani M, Kataoka N, Yakushi T, Matsushita K, Mas A. Front Microbiol; 2016 May 01; 7():1358. PubMed ID: 27625643 [Abstract] [Full Text] [Related]
8. Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter. Sainz F, Mas A, Torija MJ. Int J Food Microbiol; 2017 Feb 02; 242():45-52. PubMed ID: 27870985 [Abstract] [Full Text] [Related]
9. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Ismaili Alaoui M, Thonart P. J Biosci Bioeng; 2016 Feb 02; 121(2):166-71. PubMed ID: 26253254 [Abstract] [Full Text] [Related]
10. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production]. Li B, Pan H, Sun W, Cheng Y, Xie Z, Zhang J. Sheng Wu Gong Cheng Xue Bao; 2014 Sep 02; 30(9):1486-90. PubMed ID: 25720164 [Abstract] [Full Text] [Related]
11. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system. Ji A, Gao P. Appl Biochem Biotechnol; 2001 Jun 02; 94(3):213-23. PubMed ID: 11563824 [Abstract] [Full Text] [Related]
12. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K. Biosci Biotechnol Biochem; 2000 Nov 02; 64(11):2306-15. PubMed ID: 11193396 [Abstract] [Full Text] [Related]
13. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Pinto L, Malfeito-Ferreira M, Quintieri L, Silva AC, Baruzzi F. Int J Food Microbiol; 2019 May 02; 296():65-74. PubMed ID: 30851642 [Abstract] [Full Text] [Related]
14. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Zhou X, Xu Y. Bioresour Technol; 2019 Jun 02; 282():81-87. PubMed ID: 30852335 [Abstract] [Full Text] [Related]
15. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695 [Abstract] [Full Text] [Related]
16. Temporal and Spatial Distribution of the Acetic Acid Bacterium Communities throughout the Wooden Casks Used for the Fermentation and Maturation of Lambic Beer Underlines Their Functional Role. De Roos J, Verce M, Aerts M, Vandamme P, De Vuyst L. Appl Environ Microbiol; 2018 Apr 01; 84(7):. PubMed ID: 29352086 [Abstract] [Full Text] [Related]
17. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. Appl Microbiol Biotechnol; 2006 Nov 01; 73(2):443-51. PubMed ID: 16820953 [Abstract] [Full Text] [Related]
18. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Zhou P, Yao R, Zhang H, Bao J. Biotechnol Bioeng; 2019 Sep 01; 116(9):2191-2199. PubMed ID: 31081135 [Abstract] [Full Text] [Related]
19. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J, Wu M, Lin J, Yang L. BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063 [Abstract] [Full Text] [Related]
20. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains. Siemen A, Kosciow K, Schweiger P, Deppenmeier U. Appl Microbiol Biotechnol; 2018 Feb 17; 102(4):1699-1710. PubMed ID: 29279957 [Abstract] [Full Text] [Related] Page: [Next] [New Search]