These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 26851168

  • 1. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.
    Deep A, Sharma AL, Mohanta GC, Kumar P, Kim KH.
    Waste Manag; 2016 May; 51():190-195. PubMed ID: 26851168
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.
    Ma Y, Cui Y, Zuo X, Huang S, Hu K, Xiao X, Nan J.
    Waste Manag; 2014 Oct; 34(10):1793-9. PubMed ID: 24906867
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP, Sun SY, Song XF, Yu JG.
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [Abstract] [Full Text] [Related]

  • 6. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P, Pandey BD, Mankhand TR.
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Designing and examining e-waste recycling process: methodology and case studies.
    Li J, He X, Zeng X.
    Environ Technol; 2017 Mar; 38(6):652-660. PubMed ID: 27367434
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.
    Tanong K, Coudert L, Chartier M, Mercier G, Blais JF.
    Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038
    [Abstract] [Full Text] [Related]

  • 14. Life cycle assessment of three different management options for spent alkaline batteries.
    Xará S, Almeida MF, Costa C.
    Waste Manag; 2015 Sep; 43():460-84. PubMed ID: 26119009
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.
    Terazono A, Oguchi M, Iino S, Mogi S.
    Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742
    [Abstract] [Full Text] [Related]

  • 17. Battery related cobalt and REE flows in WEEE treatment.
    Sommer P, Rotter VS, Ueberschaar M.
    Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Zinc Oxide Nanoparticles from Waste Zn-C Battery via Thermal Route: Characterization and Properties.
    Farzana R, Rajarao R, Behera PR, Hassan K, Sahajwalla V.
    Nanomaterials (Basel); 2018 Sep 12; 8(9):. PubMed ID: 30213055
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.