These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 26851931

  • 1. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential.
    Sarman S, Wang YL, Laaksonen A.
    J Chem Phys; 2016 Feb 07; 144(5):054901. PubMed ID: 26851931
    [Abstract] [Full Text] [Related]

  • 2. Non-Newtonian rheological properties of shearing nematic liquid crystal model systems based on the Gay-Berne potential.
    Sarman S, Wang YL, Laaksonen A.
    Phys Chem Chem Phys; 2015 Jul 07; 17(25):16615-23. PubMed ID: 26055543
    [Abstract] [Full Text] [Related]

  • 3. The heat conductivity of liquid crystal phases of a soft ellipsoid string-fluid evaluated by molecular dynamics simulation.
    Sarman S, Laaksonen A.
    Phys Chem Chem Phys; 2011 Apr 07; 13(13):5915-25. PubMed ID: 21336361
    [Abstract] [Full Text] [Related]

  • 4. Twist viscosities and flow alignment of biaxial nematic liquid crystal phases of a soft ellipsoid-string fluid studied by molecular dynamics simulation.
    Sarman S, Laaksonen A.
    Phys Chem Chem Phys; 2012 Sep 14; 14(34):11999-2013. PubMed ID: 22847339
    [Abstract] [Full Text] [Related]

  • 5. Studies of translational diffusion in the smectic A phase of a Gay-Berne mesogen using molecular dynamics computer simulation.
    Bates MA, Luckhurst GR.
    J Chem Phys; 2004 Jan 01; 120(1):394-403. PubMed ID: 15267301
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Molecular dynamics simulation of planar elongational flow in a nematic liquid crystal based on the Gay-Berne potential.
    Sarman S, Laaksonen A.
    Phys Chem Chem Phys; 2015 Feb 07; 17(5):3332-42. PubMed ID: 25523414
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Measurement of diffusion in the presence of shear flow.
    Lutti A, Callaghan PT.
    J Magn Reson; 2006 May 07; 180(1):83-92. PubMed ID: 16460975
    [Abstract] [Full Text] [Related]

  • 12. Director alignment relative to the temperature gradient in nematic liquid crystals studied by molecular dynamics simulation.
    Sarman S, Laaksonen A.
    Phys Chem Chem Phys; 2014 Jul 28; 16(28):14741-9. PubMed ID: 24919847
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Molecular dynamics simulation of the nematic liquid crystal phase in the presence of an intense magnetic field.
    Satoh K.
    J Chem Phys; 2006 Apr 14; 124(14):144901. PubMed ID: 16626239
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y, Reeks MW.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar 14; 71(3 Pt 1):031113. PubMed ID: 15903412
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Role of stringlike, supramolecular assemblies in reentrant supernematic liquid crystals.
    Mazza MG, Greschek M, Valiullin R, Schoen M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May 14; 83(5 Pt 1):051704. PubMed ID: 21728553
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.