These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 26864892

  • 1. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
    Bennett RR, Lee CK, De Anda J, Nealson KH, Yildiz FH, O'Toole GA, Wong GC, Golestanian R.
    J R Soc Interface; 2016 Feb; 13(115):20150966. PubMed ID: 26864892
    [Abstract] [Full Text] [Related]

  • 2. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM, Caizza NC, Zegans ME, O'Toole GA.
    Res Microbiol; 2007 Jun; 158(5):471-7. PubMed ID: 17533122
    [Abstract] [Full Text] [Related]

  • 3. Biofilms, flagella, and mechanosensing of surfaces by bacteria.
    Belas R.
    Trends Microbiol; 2014 Sep; 22(9):517-27. PubMed ID: 24894628
    [Abstract] [Full Text] [Related]

  • 4. Flagellar motility, extracellular proteases and Vibrio cholerae detachment from abiotic and biotic surfaces.
    Mewborn L, Benitez JA, Silva AJ.
    Microb Pathog; 2017 Dec; 113():17-24. PubMed ID: 29038053
    [Abstract] [Full Text] [Related]

  • 5. Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment.
    Schniederberend M, Williams JF, Shine E, Shen C, Jain R, Emonet T, Kazmierczak BI.
    PLoS Pathog; 2019 Nov; 15(11):e1008149. PubMed ID: 31682637
    [Abstract] [Full Text] [Related]

  • 6. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment.
    Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, Wong GCL.
    Nat Commun; 2014 Sep 19; 5():4913. PubMed ID: 25234699
    [Abstract] [Full Text] [Related]

  • 7. High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.
    de Anda J, Lee EY, Lee CK, Bennett RR, Ji X, Soltani S, Harrison MC, Baker AE, Luo Y, Chou T, O'Toole GA, Armani AM, Golestanian R, Wong GCL.
    ACS Nano; 2017 Sep 26; 11(9):9340-9351. PubMed ID: 28836761
    [Abstract] [Full Text] [Related]

  • 8. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.
    Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GC.
    Biophys J; 2011 Apr 06; 100(7):1608-16. PubMed ID: 21463573
    [Abstract] [Full Text] [Related]

  • 9. Initial Phases of biofilm formation in Shewanella oneidensis MR-1.
    Thormann KM, Saville RM, Shukla S, Pelletier DA, Spormann AM.
    J Bacteriol; 2004 Dec 06; 186(23):8096-104. PubMed ID: 15547283
    [Abstract] [Full Text] [Related]

  • 10. Regulation of flagellar motility during biofilm formation.
    Guttenplan SB, Kearns DB.
    FEMS Microbiol Rev; 2013 Nov 06; 37(6):849-71. PubMed ID: 23480406
    [Abstract] [Full Text] [Related]

  • 11. Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis.
    Gao T, Shi M, Ju L, Gao H.
    Mol Microbiol; 2015 Oct 06; 98(3):571-85. PubMed ID: 26194016
    [Abstract] [Full Text] [Related]

  • 12. Repurposing a chemosensory macromolecular machine.
    Ortega DR, Yang W, Subramanian P, Mann P, Kjær A, Chen S, Watts KJ, Pirbadian S, Collins DA, Kooger R, Kalyuzhnaya MG, Ringgaard S, Briegel A, Jensen GJ.
    Nat Commun; 2020 Apr 27; 11(1):2041. PubMed ID: 32341341
    [Abstract] [Full Text] [Related]

  • 13. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P, Spormann AM.
    J Bacteriol; 2004 Dec 27; 186(24):8254-66. PubMed ID: 15576774
    [Abstract] [Full Text] [Related]

  • 14. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms.
    Fabbri S, Li J, Howlin RP, Rmaile A, Gottenbos B, De Jager M, Starke EM, Aspiras M, Ward MT, Cogan NG, Stoodley P.
    Environ Microbiol; 2017 Nov 27; 19(11):4417-4431. PubMed ID: 28799690
    [Abstract] [Full Text] [Related]

  • 15. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV, Melnikov VR, Sloot PMA.
    J Theor Biol; 2019 Dec 07; 482():109994. PubMed ID: 31487498
    [Abstract] [Full Text] [Related]

  • 16. Steps in the development of a Vibrio cholerae El Tor biofilm.
    Watnick PI, Kolter R.
    Mol Microbiol; 1999 Nov 07; 34(3):586-95. PubMed ID: 10564499
    [Abstract] [Full Text] [Related]

  • 17. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species.
    Choy WK, Zhou L, Syn CK, Zhang LH, Swarup S.
    J Bacteriol; 2004 Nov 07; 186(21):7221-8. PubMed ID: 15489433
    [Abstract] [Full Text] [Related]

  • 18. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms.
    Boles BR, Thoendel M, Singh PK.
    Mol Microbiol; 2005 Sep 07; 57(5):1210-23. PubMed ID: 16101996
    [Abstract] [Full Text] [Related]

  • 19. Dynamic instability in the hook-flagellum system that triggers bacterial flicks.
    Jabbarzadeh M, Fu HC.
    Phys Rev E; 2018 Jan 07; 97(1-1):012402. PubMed ID: 29448321
    [Abstract] [Full Text] [Related]

  • 20. Physiology of microbes in biofilms.
    Spormann AM.
    Curr Top Microbiol Immunol; 2008 Jan 07; 322():17-36. PubMed ID: 18453270
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.