These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 26869889

  • 1. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns.
    Jia Y, Parker D.
    Front Neural Circuits; 2016; 10():4. PubMed ID: 26869889
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The activity-dependent plasticity of segmental and intersegmental synaptic connections in the lamprey spinal cord.
    Parker D, Grillner S.
    Eur J Neurosci; 2000 Jun; 12(6):2135-46. PubMed ID: 10886353
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Metaplastic facilitation and ultrastructural changes in synaptic properties are associated with long-term modulation of the lamprey locomotor network.
    Bevan S, Parker D.
    J Neurosci; 2004 Oct 20; 24(42):9458-68. PubMed ID: 15496682
    [Abstract] [Full Text] [Related]

  • 9. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK, Lansner A, Grillner S, Kotaleski JH.
    Biol Cybern; 2007 Feb 20; 96(2):229-43. PubMed ID: 17180687
    [Abstract] [Full Text] [Related]

  • 10. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice.
    Nishimaru H, Restrepo CE, Kiehn O.
    J Neurosci; 2006 May 17; 26(20):5320-8. PubMed ID: 16707784
    [Abstract] [Full Text] [Related]

  • 11. Activity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.
    Parker D.
    J Neurosci; 2003 Dec 03; 23(35):11085-93. PubMed ID: 14657166
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Spinal-Cord plasticity: independent and interactive effects of neuromodulator and activity-dependent plasticity.
    Parker D.
    Mol Neurobiol; 2000 Dec 03; 22(1-3):55-80. PubMed ID: 11414281
    [Abstract] [Full Text] [Related]

  • 16. Lesioning alters functional properties in isolated spinal cord hemisegmental networks.
    Hoffman N, Parker D.
    Neuroscience; 2010 Jul 14; 168(3):732-43. PubMed ID: 20394805
    [Abstract] [Full Text] [Related]

  • 17. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP.
    J Neurophysiol; 1997 Jan 14; 77(1):289-98. PubMed ID: 9120571
    [Abstract] [Full Text] [Related]

  • 18. Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons.
    Hellgren J, Grillner S, Lansner A.
    Biol Cybern; 1992 Jan 14; 68(1):1-13. PubMed ID: 1486127
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Target-cell-specific Short-term Plasticity Reduces the Excitatory Drive onto CA1 Interneurons Relative to Pyramidal Cells During Physiologically-derived Spike Trains.
    Sun HY, Li Q, Bartley AF, Dobrunz LE.
    Neuroscience; 2018 Sep 15; 388():430-447. PubMed ID: 30099117
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.