These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Li Q, Zhou P, Yan HJ. Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508 [Abstract] [Full Text] [Related]
9. Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method for incompressible two-phase flows. Liu X, Chai Z, Shi B. Phys Rev E; 2023 Mar; 107(3-2):035308. PubMed ID: 37073063 [Abstract] [Full Text] [Related]
10. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation. Zu YQ, Li AD, Wei H. Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126 [Abstract] [Full Text] [Related]
11. Improved phase-field-based lattice Boltzmann method for thermocapillary flow. Yue L, Chai Z, Wang H, Shi B. Phys Rev E; 2022 Jan; 105(1-2):015314. PubMed ID: 35193195 [Abstract] [Full Text] [Related]
12. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H, Valocchi AJ, Zhang Y, Kang Q. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [Abstract] [Full Text] [Related]
13. Phase-field-theory-based lattice Boltzmann equation method for N immiscible incompressible fluids. Zheng L, Zheng S. Phys Rev E; 2019 Jun; 99(6-1):063310. PubMed ID: 31330677 [Abstract] [Full Text] [Related]
14. Force imbalance in lattice Boltzmann equation for two-phase flows. Guo Z, Zheng C, Shi B. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036707. PubMed ID: 21517625 [Abstract] [Full Text] [Related]
17. Phase-field lattice Boltzmann model for two-phase flows with large density ratio. Zhang S, Tang J, Wu H. Phys Rev E; 2022 Jan; 105(1-2):015304. PubMed ID: 35193185 [Abstract] [Full Text] [Related]
18. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Li Q, Luo KH, Gao YJ, He YL. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026704. PubMed ID: 22463354 [Abstract] [Full Text] [Related]
19. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Ba Y, Liu H, Li Q, Kang Q, Sun J. Phys Rev E; 2016 Aug; 94(2-1):023310. PubMed ID: 27627415 [Abstract] [Full Text] [Related]
20. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Zu YQ, He S. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542 [Abstract] [Full Text] [Related] Page: [Next] [New Search]