These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 26871191

  • 41. Lattice Boltzmann model for axisymmetric multiphase flows.
    Premnath KN, Abraham J.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056706. PubMed ID: 16089690
    [Abstract] [Full Text] [Related]

  • 42. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow.
    Safari H, Rahimian MH, Krafczyk M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013304. PubMed ID: 23944580
    [Abstract] [Full Text] [Related]

  • 43. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations.
    Wang HL, Chai ZH, Shi BC, Liang H.
    Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765
    [Abstract] [Full Text] [Related]

  • 44. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number.
    Qu K, Shu C, Chew YT.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036706. PubMed ID: 17500825
    [Abstract] [Full Text] [Related]

  • 45. Color-gradient-based phase-field equation for multiphase flow.
    Haghani R, Erfani H, McClure JE, Flekkøy EG, Berg CF.
    Phys Rev E; 2024 Mar; 109(3-2):035301. PubMed ID: 38632731
    [Abstract] [Full Text] [Related]

  • 46. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state.
    Qiao Z, Yang X, Zhang Y.
    Phys Rev E; 2018 Aug; 98(2-1):023306. PubMed ID: 30253477
    [Abstract] [Full Text] [Related]

  • 47. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows.
    Li Q, Luo KH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053307. PubMed ID: 24329379
    [Abstract] [Full Text] [Related]

  • 48. Reduction-consistent phase-field lattice Boltzmann equation for N immiscible incompressible fluids.
    Zheng L, Zheng S, Zhai Q.
    Phys Rev E; 2020 Apr; 101(4-1):043302. PubMed ID: 32422736
    [Abstract] [Full Text] [Related]

  • 49. Preconditioned lattice-Boltzmann method for steady flows.
    Guo Z, Zhao TS, Shi Y.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066706. PubMed ID: 15697552
    [Abstract] [Full Text] [Related]

  • 50. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P, Luo LS.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [Abstract] [Full Text] [Related]

  • 51. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion.
    Hu Y, Li D, Jin L, Niu X, Shu S.
    Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363
    [Abstract] [Full Text] [Related]

  • 52. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P, D'Humières D, Luo LS, Rubinstein R.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K, Ezzatneshan E.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows.
    Wen ZX, Li Q, Yu Y, Luo KH.
    Phys Rev E; 2019 Aug; 100(2-1):023301. PubMed ID: 31574674
    [Abstract] [Full Text] [Related]

  • 57. Phase-field modeling by the method of lattice Boltzmann equations.
    Fakhari A, Rahimian MH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036707. PubMed ID: 20365904
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Stabilized lattice Boltzmann-Enskog method for compressible flows and its application to one- and two-component fluids in nanochannels.
    Melchionna S, Marini Bettolo Marconi U.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036707. PubMed ID: 22587209
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.