These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 26872001
1. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties. Politakos N, Azinas S, Moya SE. Macromol Rapid Commun; 2016 Apr; 37(7):662-7. PubMed ID: 26872001 [Abstract] [Full Text] [Related]
2. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Langmuir; 2015 Aug 25; 31(33):9125-33. PubMed ID: 26245712 [Abstract] [Full Text] [Related]
3. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock RE, Kizhakkedathu JN. Biomacromolecules; 2011 Oct 10; 12(10):3715-27. PubMed ID: 21902171 [Abstract] [Full Text] [Related]
4. Synthesis of Block Copolymer Brush by RAFT and Click Chemistry and Its Self-Assembly as a Thin Film. Thankappan H, Semsarilar M, Li S, Chang Y, Bouyer D, Quemener D. Molecules; 2020 Oct 17; 25(20):. PubMed ID: 33080832 [Abstract] [Full Text] [Related]
5. Effect of Salt Concentration on the pH Responses of Strong and Weak Polyelectrolyte Brushes. Zhang J, Kou R, Liu G. Langmuir; 2017 Jul 11; 33(27):6838-6845. PubMed ID: 28628336 [Abstract] [Full Text] [Related]
7. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization. Demirci S, Caykara T. Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):111-20. PubMed ID: 25428051 [Abstract] [Full Text] [Related]
8. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A. Langmuir; 2012 May 08; 28(18):7212-22. PubMed ID: 22500465 [Abstract] [Full Text] [Related]
9. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Muller P, Sudre G, Théodoly O. Langmuir; 2008 Sep 02; 24(17):9541-50. PubMed ID: 18652425 [Abstract] [Full Text] [Related]
10. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Pan G, Zhang Y, Guo X, Li C, Zhang H. Biosens Bioelectron; 2010 Nov 15; 26(3):976-82. PubMed ID: 20837394 [Abstract] [Full Text] [Related]
11. Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization. Andruzzi L, Hexemer A, Li X, Ober CK, Kramer EJ, Galli G, Chiellini E, Fischer DA. Langmuir; 2004 Nov 23; 20(24):10498-506. PubMed ID: 15544378 [Abstract] [Full Text] [Related]
12. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Jain P, Dai J, Grajales S, Saha S, Baker GL, Bruening ML. Langmuir; 2007 Nov 06; 23(23):11360-5. PubMed ID: 17918978 [Abstract] [Full Text] [Related]
13. Polymer brushes on planar TiO2 substrates. Yang J, Hou L, Xu B, Zhang N, Liang Y, Tian W, Dong D. Macromol Rapid Commun; 2014 Jul 06; 35(13):1224-9. PubMed ID: 24719388 [Abstract] [Full Text] [Related]
14. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F, Riedel T, Bruns M, Kostina NY, Sedláková Z, Rodriguez-Emmenegger C. Macromol Biosci; 2015 May 06; 15(5):636-46. PubMed ID: 25644402 [Abstract] [Full Text] [Related]
15. Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes. Kou R, Zhang J, Wang T, Liu G. Langmuir; 2015 Sep 29; 31(38):10461-8. PubMed ID: 26359677 [Abstract] [Full Text] [Related]
16. Surface-initiated, ring-opening metathesis polymerization: formation of diblock copolymer brushes and solvent-dependent morphological changes. Kong B, Lee JK, Choi IS. Langmuir; 2007 Jun 05; 23(12):6761-5. PubMed ID: 17489620 [Abstract] [Full Text] [Related]
17. Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films. Pei Y, Travas-Sejdic J, Williams DE. Langmuir; 2012 May 29; 28(21):8072-83. PubMed ID: 22551237 [Abstract] [Full Text] [Related]
18. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. Zhao YH, Zhu XY, Wee KH, Bai R. J Phys Chem B; 2010 Feb 25; 114(7):2422-9. PubMed ID: 20121056 [Abstract] [Full Text] [Related]
19. Conformational Dynamics and Responsiveness of Weak and Strong Polyelectrolyte Brushes: Atomistic Simulations of Poly(dimethyl aminoethyl methacrylate) and Poly(2-(methacryloyloxy)ethyl trimethylammonium chloride). Santos DES, Li D, Ramstedt M, Gautrot JE, Soares TA. Langmuir; 2019 Apr 09; 35(14):5037-5049. PubMed ID: 30869897 [Abstract] [Full Text] [Related]
20. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes. Kesal D, Christau S, Krause P, Möller T, Von Klitzing R. Polymers (Basel); 2016 Apr 08; 8(4):. PubMed ID: 30979224 [Abstract] [Full Text] [Related] Page: [Next] [New Search]