These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


793 related items for PubMed ID: 2687720

  • 1. Two-stage model of memory trace formation: a role for "noisy" brain states.
    Buzsáki G.
    Neuroscience; 1989; 31(3):551-70. PubMed ID: 2687720
    [Abstract] [Full Text] [Related]

  • 2. Network properties of memory trace formation in the hippocampus.
    Buzsáki G.
    Boll Soc Ital Biol Sper; 1991 Sep; 67(9):817-35. PubMed ID: 1810338
    [Abstract] [Full Text] [Related]

  • 3. Physiological function of granule cells: a hypothesis.
    Buzsáki G, Czéh G.
    Epilepsy Res Suppl; 1992 Sep; 7():281-90. PubMed ID: 1334667
    [Abstract] [Full Text] [Related]

  • 4. Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat.
    Chrobak JJ, Buzsáki G.
    J Neurosci; 1994 Oct; 14(10):6160-70. PubMed ID: 7931570
    [Abstract] [Full Text] [Related]

  • 5. Spatial organization of physiological activity in the hippocampal region: relevance to memory formation.
    Buzsáki G, Chen LS, Gage FH.
    Prog Brain Res; 1990 Oct; 83():257-68. PubMed ID: 2203100
    [Abstract] [Full Text] [Related]

  • 6. Memory consolidation during sleep: a neurophysiological perspective.
    Buzsáki G.
    J Sleep Res; 1998 Oct; 7 Suppl 1():17-23. PubMed ID: 9682189
    [Abstract] [Full Text] [Related]

  • 7. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K, Palva JM, Ruusuvuori E, Kaila K, Taira T.
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [Abstract] [Full Text] [Related]

  • 8. A Lognormal Recurrent Network Model for Burst Generation during Hippocampal Sharp Waves.
    Omura Y, Carvalho MM, Inokuchi K, Fukai T.
    J Neurosci; 2015 Oct 28; 35(43):14585-601. PubMed ID: 26511248
    [Abstract] [Full Text] [Related]

  • 9. Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts.
    Penttonen M, Kamondi A, Sik A, Acsády L, Buzsáki G.
    Hippocampus; 1997 Oct 28; 7(4):437-50. PubMed ID: 9287083
    [Abstract] [Full Text] [Related]

  • 10. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J, Coombes S, Mason R, Owen MR.
    Hippocampus; 2012 May 28; 22(5):995-1017. PubMed ID: 21452258
    [Abstract] [Full Text] [Related]

  • 11. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A, Cobb S, Graham BP.
    Hippocampus; 2015 Feb 28; 25(2):208-18. PubMed ID: 25220633
    [Abstract] [Full Text] [Related]

  • 12. Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition.
    Neubrandt M, Oláh VJ, Brunner J, Marosi EL, Soltesz I, Szabadics J.
    J Neurosci; 2018 Feb 14; 38(7):1711-1724. PubMed ID: 29335356
    [Abstract] [Full Text] [Related]

  • 13. Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices.
    Haas HL, Jefferys JG.
    J Physiol; 1984 Sep 14; 354():185-201. PubMed ID: 6481633
    [Abstract] [Full Text] [Related]

  • 14. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information.
    Vinogradova OS.
    Hippocampus; 2001 Sep 14; 11(5):578-98. PubMed ID: 11732710
    [Abstract] [Full Text] [Related]

  • 15. Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus.
    Traub RD, Miles R, Buzsáki G.
    J Physiol; 1992 Sep 14; 451():653-72. PubMed ID: 1403830
    [Abstract] [Full Text] [Related]

  • 16. Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions.
    Battaglia FP, Sutherland GR, McNaughton BL.
    Learn Mem; 2004 Sep 14; 11(6):697-704. PubMed ID: 15576887
    [Abstract] [Full Text] [Related]

  • 17. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.
    Menendez de la Prida L, Sanchez-Andres JV.
    Neuroscience; 2000 Sep 14; 97(2):227-41. PubMed ID: 10799755
    [Abstract] [Full Text] [Related]

  • 18. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER, Su H, Yaari Y.
    J Physiol; 2001 Apr 01; 532(Pt 1):205-16. PubMed ID: 11283235
    [Abstract] [Full Text] [Related]

  • 19. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats.
    Hollrigel GS, Chen K, Baram TZ, Soltesz I.
    Neuroscience; 1998 May 01; 84(1):71-9. PubMed ID: 9522363
    [Abstract] [Full Text] [Related]

  • 20. Hippocampal sharp waves: their origin and significance.
    Buzsáki G.
    Brain Res; 1986 Nov 29; 398(2):242-52. PubMed ID: 3026567
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.