These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


374 related items for PubMed ID: 2688091

  • 1. The anticodon contains a major element of the identity of arginine transfer RNAs.
    Schulman LH, Pelka H.
    Science; 1989 Dec 22; 246(4937):1595-7. PubMed ID: 2688091
    [Abstract] [Full Text] [Related]

  • 2. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine.
    Schulman LH, Pelka H.
    Nucleic Acids Res; 1990 Jan 25; 18(2):285-9. PubMed ID: 2109304
    [Abstract] [Full Text] [Related]

  • 3. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T, Mechulam Y, Fayat G, Blanquet S.
    Nucleic Acids Res; 1992 Sep 25; 20(18):4741-6. PubMed ID: 1408786
    [Abstract] [Full Text] [Related]

  • 4. Anticodon switching changes the identity of methionine and valine transfer RNAs.
    Schulman LH, Pelka H.
    Science; 1988 Nov 04; 242(4879):765-8. PubMed ID: 3055296
    [Abstract] [Full Text] [Related]

  • 5. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH, Pelka H.
    Fed Proc; 1984 Dec 04; 43(15):2977-80. PubMed ID: 6389181
    [Abstract] [Full Text] [Related]

  • 6. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E, Meinnel T, Panvert M, Mechulam Y, Blanquet S.
    J Mol Biol; 1993 Oct 20; 233(4):615-28. PubMed ID: 8411169
    [Abstract] [Full Text] [Related]

  • 7. In vitro study of E.coli tRNA(Arg) and tRNA(Lys) identity elements.
    Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M.
    Nucleic Acids Res; 1992 May 11; 20(9):2335-9. PubMed ID: 1375736
    [Abstract] [Full Text] [Related]

  • 8. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH, Pelka H.
    Proc Natl Acad Sci U S A; 1983 Nov 11; 80(22):6755-9. PubMed ID: 6359155
    [Abstract] [Full Text] [Related]

  • 9. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH, Pelka H, Susani M.
    Nucleic Acids Res; 1983 Mar 11; 11(5):1439-55. PubMed ID: 6338482
    [Abstract] [Full Text] [Related]

  • 10. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC, Söll D.
    Biochemistry; 1993 Dec 28; 32(51):14210-9. PubMed ID: 7505112
    [Abstract] [Full Text] [Related]

  • 11. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T, Mechulam Y, Le Corre D, Panvert M, Blanquet S, Fayat G.
    Proc Natl Acad Sci U S A; 1991 Jan 01; 88(1):291-5. PubMed ID: 1986377
    [Abstract] [Full Text] [Related]

  • 12. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase.
    Ghosh G, Pelka H, Schulman LH.
    Biochemistry; 1990 Mar 06; 29(9):2220-5. PubMed ID: 2186810
    [Abstract] [Full Text] [Related]

  • 13. Binding of the anticodon domain of tRNA(fMet) to Escherichia coli methionyl-tRNA synthetase.
    Meinnel T, Mechulam Y, Blanquet S, Fayat G.
    J Mol Biol; 1991 Jul 20; 220(2):205-8. PubMed ID: 1856854
    [Abstract] [Full Text] [Related]

  • 14. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase.
    Meinnel T, Mechulam Y, Lazennec C, Blanquet S, Fayat G.
    J Mol Biol; 1993 Jan 05; 229(1):26-36. PubMed ID: 8421312
    [Abstract] [Full Text] [Related]

  • 15. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs.
    McClain WH, Foss K, Jenkins RA, Schneider J.
    Proc Natl Acad Sci U S A; 1990 Dec 05; 87(23):9260-4. PubMed ID: 2251270
    [Abstract] [Full Text] [Related]

  • 16. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A, Sissler M, Florentz C, Giegé R.
    Biochimie; 2004 Jan 05; 86(1):21-9. PubMed ID: 14987797
    [Abstract] [Full Text] [Related]

  • 17. Importance of the anticodon sequence in the aminoacylation of tRNAs by methionyl-tRNA synthetase and by valyl-tRNA synthetase in an Archaebacterium.
    Ramesh V, RajBhandary UL.
    J Biol Chem; 2001 Feb 02; 276(5):3660-5. PubMed ID: 11058596
    [Abstract] [Full Text] [Related]

  • 18. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition.
    McShane A, Hok E, Tomberlin J, Eriani G, Geslain R.
    PLoS One; 2016 Feb 02; 11(2):e0148460. PubMed ID: 26844776
    [Abstract] [Full Text] [Related]

  • 19. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules.
    Romby P, Brunel C, Caillet J, Springer M, Grunberg-Manago M, Westhof E, Ehresmann C, Ehresmann B.
    Nucleic Acids Res; 1992 Nov 11; 20(21):5633-40. PubMed ID: 1280807
    [Abstract] [Full Text] [Related]

  • 20. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
    Delagoutte B, Moras D, Cavarelli J.
    EMBO J; 2000 Nov 01; 19(21):5599-610. PubMed ID: 11060012
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.