These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
89 related items for PubMed ID: 2688857
21. Evidence of membrane changes during regression in the bovine corpus luteum. Carlson JC, Buhr MM, Wentworth R, Hansel W. Endocrinology; 1982 May; 110(5):1472-6. PubMed ID: 7200419 [Abstract] [Full Text] [Related]
22. Compositional and physical properties of microsomal membrane lipids from regressing rat corpora lutea. Carlson JC, Buhr MM, Gruber MY, Thompson JE. Endocrinology; 1981 Jun; 108(6):2124-8. PubMed ID: 7227301 [Abstract] [Full Text] [Related]
24. Genome-wide gene expression analysis reveals a dynamic interplay between luteotropic and luteolytic factors in the regulation of corpus luteum function in the bonnet monkey (Macaca radiata). Priyanka S, Jayaram P, Sridaran R, Medhamurthy R. Endocrinology; 2009 Mar; 150(3):1473-84. PubMed ID: 18988674 [Abstract] [Full Text] [Related]
25. Positive association, in local release, of luteal oxytocin with endothelin 1 and prostaglandin F2alpha during spontaneous luteolysis in the cow: a possible intermediatory role for luteolytic cascade within the corpus luteum. Shirasuna K, Shimizu T, Hayashi KG, Nagai K, Matsui M, Miyamoto A. Biol Reprod; 2007 Jun; 76(6):965-70. PubMed ID: 17287495 [Abstract] [Full Text] [Related]
26. Gonadotropin-releasing hormone agonist has the ability to induce increased matrix metalloproteinase (MMP)-2 and membrane type 1-MMP expression in corpora lutea, and structural luteolysis in rats. Goto T, Endo T, Henmi H, Kitajima Y, Kiya T, Nishikawa A, Manase K, Sato H, Kudo R. J Endocrinol; 1999 Jun; 161(3):393-402. PubMed ID: 10333542 [Abstract] [Full Text] [Related]
27. Chronic exposure of the developing corpus luteum in monkeys to chorionic gonadotropin: persistent progesterone production despite desensitization of adenylate cyclase. Vandevoort CA, Stouffer RL, Molskness TA, Ottobre JS. Endocrinology; 1988 May; 122(5):1876-82. PubMed ID: 2834178 [Abstract] [Full Text] [Related]
28. Studies on the mechanism of PGF2alpha and gonadotropin interactions on LH receptor function in corpora lutea during luteolysis. Behrman HR, Grinwich DL, Hichens M. Adv Prostaglandin Thromboxane Res; 1976 May; 2():655-66. PubMed ID: 185887 [Abstract] [Full Text] [Related]
29. Soluble Fas (FasB) regulates luteal cell apoptosis during luteolysis in murine ovaries. Komatsu K, Manabe N, Kiso M, Shimabe M, Miyamoto H. Mol Reprod Dev; 2003 Aug; 65(4):345-52. PubMed ID: 12840807 [Abstract] [Full Text] [Related]
30. Estrogen promotes luteolysis by redistributing prostaglandin F2α receptors within primate luteal cells. Kim SO, Markosyan N, Pepe GJ, Duffy DM. Reproduction; 2015 May; 149(5):453-64. PubMed ID: 25687410 [Abstract] [Full Text] [Related]
31. Luteolysis is linked to luteinizing hormone-induced depletion of adenosine triphosphate in vivo. Soodak LK, MacDonald GJ, Behrman HR. Endocrinology; 1988 Jan; 122(1):187-93. PubMed ID: 3335203 [Abstract] [Full Text] [Related]
32. Cytokines tumor necrosis factor-α and interferon-γ participate in modulation of the equine corpus luteum as autocrine and paracrine factors. Galvão A, Skarzynski DJ, Szóstek A, Silva E, Tramontano A, Mollo A, Mateus L, Ferreira-Dias G. J Reprod Immunol; 2012 Jan; 93(1):28-37. PubMed ID: 22186103 [Abstract] [Full Text] [Related]
33. Effects of prostaglandin F2 alpha-induced luteolysis on the populations of cells in the ovine corpus luteum. Braden TD, Gamboni F, Niswender GD. Biol Reprod; 1988 Sep; 39(2):245-53. PubMed ID: 3179378 [Abstract] [Full Text] [Related]
34. Comparison of the binding of human chorionic gonadotropin to isolated bovine luteal cells and bovine luteal plasma membranes. Papaionannou S, Gospodarowicz D. Endocrinology; 1975 Jul; 97(1):114-24. PubMed ID: 166824 [Abstract] [Full Text] [Related]
35. Change in gonadotropin-binding sites in intracellular organelles and plasma membranes during luteal growth, development and regression. Rao CV, Fields MJ, Chen TT, Abel JH, Edgerton LA. Exp Cell Res; 1983 Apr 01; 144(2):285-95. PubMed ID: 6301864 [Abstract] [Full Text] [Related]
36. In vivo generation of hydrogen peroxide in the rat corpus luteum during luteolysis. Riley JC, Behrman HR. Endocrinology; 1991 Apr 01; 128(4):1749-53. PubMed ID: 2004600 [Abstract] [Full Text] [Related]
37. Participation of intraluteal progesterone and prostaglandin F2 alpha in LH-induced luteolysis in pregnant rat. Stocco CO, Deis RP. J Endocrinol; 1998 Feb 01; 156(2):253-9. PubMed ID: 9518870 [Abstract] [Full Text] [Related]
38. The relationship between the production and the anti-gonadotrophic action of prostaglandin F 2 alpha in luteal cells from the marmoset monkey (Callithrix jacchus) in the early and mid-luteal phase. Webley GE, Michael AE, Abayasekara DR. Gen Comp Endocrinol; 2010 Apr 01; 166(2):436-42. PubMed ID: 20067799 [Abstract] [Full Text] [Related]
39. Differential uptake of fluorescent-tagged low density lipoprotein by cells from the primate corpus luteum: isolation and characterization of subtypes of small and large luteal cells. Brannian JD, Shiigi SM, Stouffer RL. Endocrinology; 1991 Dec 01; 129(6):3247-53. PubMed ID: 1954903 [Abstract] [Full Text] [Related]
40. Internalization of 125I-human choriogonadotropin in bovine luteal slices. A biochemical study. Chegini N, Rao CV, Carman FR. Exp Cell Res; 1984 Apr 01; 151(2):466-82. PubMed ID: 6705837 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]