These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 26890097
1. Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study. Roosink M, Robitaille N, Jackson PL, Bouyer LJ, Mercier C. Restor Neurol Neurosci; 2016; 34(2):227-35. PubMed ID: 26890097 [Abstract] [Full Text] [Related]
2. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review. Austin PD, Siddall PJ. J Spinal Cord Med; 2021 Jan; 44(1):8-18. PubMed ID: 30707649 [Abstract] [Full Text] [Related]
3. Virtual feedback for motor and pain rehabilitation after spinal cord injury. Roosink M, Mercier C. Spinal Cord; 2014 Dec; 52(12):860-6. PubMed ID: 25266696 [Abstract] [Full Text] [Related]
4. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Neurorehabil Neural Repair; 2016 Jul; 30(6):562-72. PubMed ID: 26428035 [Abstract] [Full Text] [Related]
5. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Villiger M, Bohli D, Kiper D, Pyk P, Spillmann J, Meilick B, Curt A, Hepp-Reymond MC, Hotz-Boendermaker S, Eng K. Neurorehabil Neural Repair; 2013 Oct; 27(8):675-83. PubMed ID: 23757298 [Abstract] [Full Text] [Related]
6. Using visual illusion to reduce at-level neuropathic pain in paraplegia. Moseley LG. Pain; 2007 Aug; 130(3):294-298. PubMed ID: 17335974 [Abstract] [Full Text] [Related]
7. Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Dunsky A, Dickstein R, Marcovitz E, Levy S, Deutsch JE. Arch Phys Med Rehabil; 2008 Aug; 89(8):1580-8. PubMed ID: 18674992 [Abstract] [Full Text] [Related]
8. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Tamburella F, Scivoletto G, Molinari M. Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301 [Abstract] [Full Text] [Related]
9. Effects of motor imagery training after chronic, complete spinal cord injury. Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Exp Brain Res; 2007 Feb; 177(2):233-42. PubMed ID: 16944108 [Abstract] [Full Text] [Related]
11. The reproducibility and convergent validity of the walking index for spinal cord injury (WISCI) in chronic spinal cord injury. Burns AS, Delparte JJ, Patrick M, Marino RJ, Ditunno JF. Neurorehabil Neural Repair; 2011 Feb; 25(2):149-57. PubMed ID: 21239706 [Abstract] [Full Text] [Related]
12. Increasing patient engagement during virtual reality-based motor rehabilitation. Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M. Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181 [Abstract] [Full Text] [Related]
13. Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial. Oostra KM, Oomen A, Vanderstraeten G, Vingerhoets G. J Rehabil Med; 2015 Mar; 47(3):204-9. PubMed ID: 25403275 [Abstract] [Full Text] [Related]
14. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a preliminary investigation of feasibility and clinical efficacy. Trost Z, Anam M, Seward J, Shum C, Rumble D, Sturgeon J, Mark V, Chen Y, Mitchell L, Cowan R, Perera R, Richardson E, Richards S, Gustin S. Pain; 2022 Feb 01; 163(2):350-361. PubMed ID: 34407034 [Abstract] [Full Text] [Related]
15. Effects of virtual walking on spinal cord injury-related neuropathic pain: A randomized, controlled trial. Richardson EJ, McKinley EC, Rahman AKMF, Klebine P, Redden DT, Richards JS. Rehabil Psychol; 2019 Feb 01; 64(1):13-24. PubMed ID: 30407030 [Abstract] [Full Text] [Related]
16. Effects of Virtual Walking Treatment on Spinal Cord Injury-Related Neuropathic Pain: Pilot Results and Trends Related to Location of Pain and at-level Neuronal Hypersensitivity. Jordan M, Richardson EJ. Am J Phys Med Rehabil; 2016 May 01; 95(5):390-6. PubMed ID: 26544859 [Abstract] [Full Text] [Related]
17. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study (.). Cruciger O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Citak M, Aach M. Disabil Rehabil Assist Technol; 2016 Aug 01; 11(6):529-34. PubMed ID: 25382234 [Abstract] [Full Text] [Related]
18. Computerized visual feedback: an adjunct to robotic-assisted gait training. Banz R, Bolliger M, Colombo G, Dietz V, Lünenburger L. Phys Ther; 2008 Oct 01; 88(10):1135-45. PubMed ID: 18772279 [Abstract] [Full Text] [Related]
19. Gait speed in relation to categories of functional ambulation after spinal cord injury. van Hedel HJ, EMSCI Study Group. Neurorehabil Neural Repair; 2009 May 01; 23(4):343-50. PubMed ID: 19036717 [Abstract] [Full Text] [Related]
20. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerström-Noga E, Cilien DC, Gant K, Ginnety K, Gonzalez H, Martinez A, Anderson KD, Nash MS. Arch Phys Med Rehabil; 2014 Oct 01; 95(10):1878-1887.e4. PubMed ID: 24845221 [Abstract] [Full Text] [Related] Page: [Next] [New Search]