These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1252 related items for PubMed ID: 26892298
41. Effects of sleep deprivation on perceived and performance fatigability in females: An exploratory study. Magnuson JR, Kang HJ, Debenham MIB, McNeil CJ, Dalton BH. Eur J Sport Sci; 2023 Sep; 23(9):1922-1931. PubMed ID: 35989687 [Abstract] [Full Text] [Related]
42. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Eur J Neurosci; 2007 Jul; 26(1):242-9. PubMed ID: 17614951 [Abstract] [Full Text] [Related]
43. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Todd G, Petersen NT, Taylor JL, Gandevia SC. Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313 [Abstract] [Full Text] [Related]
44. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement. Forman DA, Philpott DT, Button DC, Power KE. Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204 [Abstract] [Full Text] [Related]
45. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Jeffery DT, Norton JA, Roy FD, Gorassini MA. Exp Brain Res; 2007 Sep; 182(2):281-7. PubMed ID: 17717651 [Abstract] [Full Text] [Related]
46. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN. Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467 [Abstract] [Full Text] [Related]
47. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H, Tamaki H, Yamamoto N. Brain Res; 2013 Sep 05; 1529():83-91. PubMed ID: 23891715 [Abstract] [Full Text] [Related]
48. Remote facilitation of supraspinal motor excitability depends on the level of effort. Tazoe T, Sakamoto M, Nakajima T, Endoh T, Shiozawa S, Komiyama T. Eur J Neurosci; 2009 Oct 05; 30(7):1297-305. PubMed ID: 19769593 [Abstract] [Full Text] [Related]
49. Muscle length and joint angle influence spinal but not corticospinal excitability to the biceps brachii across forearm postures. Forman DA, Abdel-Malek D, Bunce CMF, Holmes MWR. J Neurophysiol; 2019 Jul 01; 122(1):413-423. PubMed ID: 31116661 [Abstract] [Full Text] [Related]
50. Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training. Mason J, Frazer A, Horvath DM, Pearce AJ, Avela J, Howatson G, Kidgell D. Eur J Appl Physiol; 2017 Jul 01; 117(7):1359-1371. PubMed ID: 28455814 [Abstract] [Full Text] [Related]
51. Effects of fatigue on corticospinal excitability of the human knee extensors. Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL. Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591 [Abstract] [Full Text] [Related]
52. Muscle-specific variations in use-dependent crossed-facilitation of corticospinal pathways mediated by transcranial direct current (DC) stimulation. Carson RG, Kennedy NC, Linden MA, Britton L. Neurosci Lett; 2008 Aug 22; 441(2):153-7. PubMed ID: 18582535 [Abstract] [Full Text] [Related]
53. Submaximal isometric fatiguing exercise of the elbow flexors has no age-related effect on GABAB-mediated inhibition. Otieno LA, Semmler JG, Smith AE, Sidhu SK. J Appl Physiol (1985); 2022 Jan 01; 132(1):167-177. PubMed ID: 34855523 [Abstract] [Full Text] [Related]
54. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. Sangari S, Perez MA. J Neurosci; 2020 Nov 11; 40(46):8831-8841. PubMed ID: 32883710 [Abstract] [Full Text] [Related]
55. Time course of neuromuscular responses to acute hypoxia during voluntary contractions. McKeown DJ, McNeil CJ, Simmonds MJ, Kavanagh JJ. Exp Physiol; 2020 Nov 11; 105(11):1855-1868. PubMed ID: 32869906 [Abstract] [Full Text] [Related]
56. Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation. Cambieri C, Scelzo E, Li Voti P, Priori A, Accornero N, Inghilleri M. Neurosci Lett; 2012 Aug 01; 522(2):167-71. PubMed ID: 22732445 [Abstract] [Full Text] [Related]
57. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task. Ambrus GG, Chaieb L, Stilling R, Rothkegel H, Antal A, Paulus W. Neurosci Lett; 2016 Mar 11; 616():98-104. PubMed ID: 26826607 [Abstract] [Full Text] [Related]
58. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions. Brotherton EJ, Sabapathy S, Mckeown DJ, Kavanagh JJ. J Neurophysiol; 2022 Jul 01; 128(1):105-117. PubMed ID: 35675447 [Abstract] [Full Text] [Related]
59. Extending the limits of force endurance: Stimulation of the motor or the frontal cortex? Radel R, Tempest G, Denis G, Besson P, Zory R. Cortex; 2017 Dec 01; 97():96-108. PubMed ID: 29101820 [Abstract] [Full Text] [Related]
60. Independent modulation of corticospinal and group I afferents pathways during upright standing. Baudry S, Duchateau J. Neuroscience; 2014 Sep 05; 275():162-9. PubMed ID: 24952331 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]