These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


361 related items for PubMed ID: 26896235

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.
    Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M.
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():158-66. PubMed ID: 25842121
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants.
    Gunputh UF, Le H, Handy RD, Tredwin C.
    Mater Sci Eng C Mater Biol Appl; 2018 Oct 01; 91():638-644. PubMed ID: 30033297
    [Abstract] [Full Text] [Related]

  • 8. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.
    Li B, Hao J, Min Y, Xin S, Guo L, He F, Liang C, Wang H, Li H.
    Mater Sci Eng C Mater Biol Appl; 2015 Jun 01; 51():80-6. PubMed ID: 25842111
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus.
    Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD.
    Nanotoxicology; 2020 Feb 01; 14(1):97-110. PubMed ID: 31566471
    [Abstract] [Full Text] [Related]

  • 13. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response.
    Yuan Z, Liu P, Hao Y, Ding Y, Cai K.
    Colloids Surf B Biointerfaces; 2018 Nov 01; 171():597-605. PubMed ID: 30099296
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.
    Pantaroto HN, Ricomini-Filho AP, Bertolini MM, Dias da Silva JH, Azevedo Neto NF, Sukotjo C, Rangel EC, Barão VAR.
    Dent Mater; 2018 Jul 01; 34(7):e182-e195. PubMed ID: 29678329
    [Abstract] [Full Text] [Related]

  • 17. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.
    Kang BM, Jeong WJ, Park GC, Yoon DJ, Ahn HG, Lim YS.
    J Nanosci Nanotechnol; 2015 Aug 01; 15(8):6020-3. PubMed ID: 26369190
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam evaporation.
    Zhang X, Li Y, Luo X, Ding Y.
    J Mater Sci Mater Med; 2022 Jun 23; 33(7):57. PubMed ID: 35737197
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.