These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 26897027
1. Molecular foundations of chilling-tolerance of modern maize. Sobkowiak A, Jończyk M, Adamczyk J, Szczepanik J, Solecka D, Kuciara I, Hetmańczyk K, Trzcinska-Danielewicz J, Grzybowski M, Skoneczny M, Fronk J, Sowiński P. BMC Genomics; 2016 Feb 20; 17():125. PubMed ID: 26897027 [Abstract] [Full Text] [Related]
2. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P. Plant Mol Biol; 2014 Jun 20; 85(3):317-31. PubMed ID: 24623520 [Abstract] [Full Text] [Related]
3. Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs. Grzybowski M, Adamczyk J, Jończyk M, Sobkowiak A, Szczepanik J, Frankiewicz K, Fronk J, Sowiński P. J Exp Bot; 2019 May 09; 70(10):2887-2904. PubMed ID: 30825373 [Abstract] [Full Text] [Related]
4. Can we improve the chilling tolerance of maize photosynthesis through breeding? Burnett AC, Kromdijk J. J Exp Bot; 2022 May 23; 73(10):3138-3156. PubMed ID: 35143635 [Abstract] [Full Text] [Related]
6. Can the cold tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco? Wang D, Naidu SL, Portis AR, Moose SP, Long SP. J Exp Bot; 2008 May 23; 59(7):1779-87. PubMed ID: 18503044 [Abstract] [Full Text] [Related]
7. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize. Han Q, Qi J, Hao G, Zhang C, Wang C, Dirk LMA, Downie AB, Zhao T. Plant Cell Physiol; 2020 Feb 01; 61(2):331-341. PubMed ID: 31638155 [Abstract] [Full Text] [Related]
8. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. Hewezi T, Léger M, El Kayal W, Gentzbittel L. J Exp Bot; 2006 Feb 01; 57(12):3109-22. PubMed ID: 16899522 [Abstract] [Full Text] [Related]
9. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R, Melchinger AE. Plant Cell Environ; 2013 Oct 01; 36(10):1871-87. PubMed ID: 23488576 [Abstract] [Full Text] [Related]
10. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J, Yan B, Lou X, Ma H, Ruan S. BMC Plant Biol; 2017 Jan 25; 17(1):26. PubMed ID: 28122503 [Abstract] [Full Text] [Related]
11. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. Sowiński P, Rudzińska-Langwald A, Adamczyk J, Kubica I, Fronk J. J Plant Physiol; 2005 Jan 25; 162(1):67-80. PubMed ID: 15700422 [Abstract] [Full Text] [Related]
12. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. J Plant Physiol; 2018 Sep 25; 228():178-188. PubMed ID: 29945073 [Abstract] [Full Text] [Related]
13. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. Urrutia M, Blein-Nicolas M, Prigent S, Bernillon S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Bénard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Plant Cell Environ; 2021 May 25; 44(5):1504-1521. PubMed ID: 33410508 [Abstract] [Full Text] [Related]
14. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Bilska A, Sowinski P. Ann Bot; 2010 Nov 25; 106(5):675-86. PubMed ID: 20880933 [Abstract] [Full Text] [Related]
15. Natural variation in a type-A response regulator confers maize chilling tolerance. Zeng R, Li Z, Shi Y, Fu D, Yin P, Cheng J, Jiang C, Yang S. Nat Commun; 2021 Aug 05; 12(1):4713. PubMed ID: 34354054 [Abstract] [Full Text] [Related]
16. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O. Plant Physiol Biochem; 2009 Feb 05; 47(2):116-22. PubMed ID: 19042136 [Abstract] [Full Text] [Related]
17. Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. Pál M, Janda T, Majláth I, Szalai G. Int J Mol Sci; 2020 Mar 12; 21(6):. PubMed ID: 32178416 [Abstract] [Full Text] [Related]
18. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). Barrios A, Caminero C, García P, Krezdorn N, Hoffmeier K, Winter P, Pérez de la Vega M. BMC Plant Biol; 2017 Jun 30; 17(1):111. PubMed ID: 28666411 [Abstract] [Full Text] [Related]
19. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. Yan L, Kenchanmane Raju SK, Lai X, Zhang Y, Dai X, Rodriguez O, Mahboub S, Roston RL, Schnable JC. Plant J; 2019 Sep 30; 99(5):965-977. PubMed ID: 31069858 [Abstract] [Full Text] [Related]