These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Marimani M, Ahmad A, Duse A. Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504 [Abstract] [Full Text] [Related]
10. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Kiran D, Podell BK, Chambers M, Basaraba RJ. Semin Immunopathol; 2016 Mar; 38(2):167-83. PubMed ID: 26510950 [Abstract] [Full Text] [Related]
11. Anti-TB drug resistance levels and patterns among Mycobacterium tuberculosis isolated from newly diagnosed cases of pulmonary tuberculosis in Dar es Salaam, Tanzania. Matee M, Mfinanga S, Holm-Hansen C. APMIS; 2009 Apr; 117(4):263-7. PubMed ID: 19338514 [Abstract] [Full Text] [Related]
12. An In silico approach to identify potential inhibitors against multiple drug targets of Mycobacterium tuberculosis. Kumar S, Sahu P, Jena L. Int J Mycobacteriol; 2019 Apr; 8(3):252-261. PubMed ID: 31512601 [Abstract] [Full Text] [Related]
13. The future for early-stage tuberculosis drug discovery. Zuniga ES, Early J, Parish T. Future Microbiol; 2015 Apr; 10(2):217-29. PubMed ID: 25689534 [Abstract] [Full Text] [Related]
14. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Bhat ZS, Rather MA, Maqbool M, Ahmad Z. Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964 [Abstract] [Full Text] [Related]
15. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Enzymes; 2024 Jul; 55():343-381. PubMed ID: 39222997 [Abstract] [Full Text] [Related]
16. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Evans JC, Mizrahi V. Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115 [Abstract] [Full Text] [Related]
17. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages. Tomioka H. Curr Pharm Des; 2014 Oct; 20(27):4404-17. PubMed ID: 24245765 [Abstract] [Full Text] [Related]
18. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria. Pal R, Hameed S, Fatima Z. Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296 [Abstract] [Full Text] [Related]
19. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Sellamuthu S, Singh M, Kumar A, Singh SK. Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892 [Abstract] [Full Text] [Related]
20. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets. Dos Santos Fernandes GF, Jornada DH, de Souza PC, Chin CM, Pavan FR, Dos Santos JL. Curr Med Chem; 2015 Jun; 22(27):3133-61. PubMed ID: 26282941 [Abstract] [Full Text] [Related] Page: [Next] [New Search]