These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


544 related items for PubMed ID: 26900972

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. UV/H2O2 advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays.
    Parker AM, Lester Y, Spangler EK, von Gunten U, Linden KG.
    Chemosphere; 2017 Sep; 182():477-482. PubMed ID: 28521162
    [Abstract] [Full Text] [Related]

  • 3. Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes.
    Mestankova H, Schirmer K, Canonica S, von Gunten U.
    Water Res; 2014 Dec 01; 66():399-410. PubMed ID: 25240607
    [Abstract] [Full Text] [Related]

  • 4. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.
    Chen Z, Fang J, Fan C, Shang C.
    Chemosphere; 2016 May 01; 150():731-739. PubMed ID: 26733013
    [Abstract] [Full Text] [Related]

  • 5. Application of advanced oxidation processes and toxicity assessment of transformation products.
    Sharma A, Ahmad J, Flora SJS.
    Environ Res; 2018 Nov 01; 167():223-233. PubMed ID: 30055452
    [Abstract] [Full Text] [Related]

  • 6. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals.
    Chen WR, Wu C, Elovitz MS, Linden KG, Mel Suffet IH.
    Water Res; 2008 Jan 01; 42(1-2):137-44. PubMed ID: 17719074
    [Abstract] [Full Text] [Related]

  • 7. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ, Linden KG, Canonica S, von Gunten U.
    Water Res; 2006 Dec 01; 40(20):3695-704. PubMed ID: 17078993
    [Abstract] [Full Text] [Related]

  • 8. Kinetics of quinoline degradation by O3/UV in aqueous phase.
    Wang X, Huang X, Zuo C, Hu H.
    Chemosphere; 2004 May 01; 55(5):733-41. PubMed ID: 15013678
    [Abstract] [Full Text] [Related]

  • 9. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR, Sharpless CM, Linden KG, Suffet IH.
    Environ Sci Technol; 2006 Apr 15; 40(8):2734-9. PubMed ID: 16683616
    [Abstract] [Full Text] [Related]

  • 10. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes.
    Jin X, Peldszus S, Huck PM.
    Water Res; 2012 Dec 01; 46(19):6519-30. PubMed ID: 23079129
    [Abstract] [Full Text] [Related]

  • 11. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.
    Keen OS, Ferrer I, Michael Thurman E, Linden KG.
    Chemosphere; 2014 Dec 01; 117():316-23. PubMed ID: 25150682
    [Abstract] [Full Text] [Related]

  • 12. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA, Stalter D, Gernjak W, Weinberg HS, Keller J, Farré MJ.
    Water Res; 2015 Dec 15; 87():49-58. PubMed ID: 26378731
    [Abstract] [Full Text] [Related]

  • 13. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2.
    Katsoyiannis IA, Canonica S, von Gunten U.
    Water Res; 2011 Jul 15; 45(13):3811-22. PubMed ID: 21645916
    [Abstract] [Full Text] [Related]

  • 14. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.
    Čehovin M, Medic A, Scheideler J, Mielcke J, Ried A, Kompare B, Žgajnar Gotvajn A.
    Ultrason Sonochem; 2017 Jul 15; 37():394-404. PubMed ID: 28427649
    [Abstract] [Full Text] [Related]

  • 15. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.
    Sudhakaran S, Amy GL.
    Water Res; 2013 Mar 01; 47(3):1111-22. PubMed ID: 23260175
    [Abstract] [Full Text] [Related]

  • 16. Identification of mutagenic transformation products generated during oxidation of 3-methyl-4-nitrophenol solutions by orbitrap tandem mass spectrometry and quantitative structure-activity relationship analyses.
    Matsushita T, Honda S, Kuriyama T, Fujita Y, Kondo T, Matsui Y, Shirasaki N, Takanashi H, Kameya T.
    Water Res; 2018 Feb 01; 129():347-356. PubMed ID: 29169108
    [Abstract] [Full Text] [Related]

  • 17. Ozonation of drinking water: part I. Oxidation kinetics and product formation.
    von Gunten U.
    Water Res; 2003 Apr 01; 37(7):1443-67. PubMed ID: 12600374
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects.
    Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B.
    Chemosphere; 2023 Dec 01; 345():140473. PubMed ID: 37866496
    [Abstract] [Full Text] [Related]

  • 20. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H(2)O(2) advanced oxidation processes.
    Baeza C, Knappe DR.
    Water Res; 2011 Oct 01; 45(15):4531-43. PubMed ID: 21714983
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.