These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa. Borrero-de Acuña JM, Molinari G, Rohde M, Dammeyer T, Wissing J, Jänsch L, Arias S, Jahn M, Schobert M, Timmis KN, Jahn D. J Bacteriol; 2015 Oct; 197(19):3066-75. PubMed ID: 26170416 [Abstract] [Full Text] [Related]
4. Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Vollack KU, Xie J, Härtig E, Römling U, Zumft WG. Microbiology (Reading); 1998 Feb; 144 ( Pt 2)():441-448. PubMed ID: 9493381 [Abstract] [Full Text] [Related]
5. The nitrate-sensing NasST system regulates nitrous oxide reductase and periplasmic nitrate reductase in Bradyrhizobium japonicum. Sánchez C, Itakura M, Okubo T, Matsumoto T, Yoshikawa H, Gotoh A, Hidaka M, Uchida T, Minamisawa K. Environ Microbiol; 2014 Oct; 16(10):3263-74. PubMed ID: 24947409 [Abstract] [Full Text] [Related]
7. Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa. Arai H, Mizutani M, Igarashi Y. Microbiology (Reading); 2003 Jan; 149(Pt 1):29-36. PubMed ID: 12576577 [Abstract] [Full Text] [Related]
12. Visualization of mRNA Expression in Pseudomonas aeruginosa Aggregates Reveals Spatial Patterns of Fermentative and Denitrifying Metabolism. Livingston J, Spero MA, Lonergan ZR, Newman DK. Appl Environ Microbiol; 2022 Jun 14; 88(11):e0043922. PubMed ID: 35586988 [Abstract] [Full Text] [Related]
13. NifA is required for maximal expression of denitrification genes in Bradyrhizobium japonicum. Bueno E, Mesa S, Sanchez C, Bedmar EJ, Delgado MJ. Environ Microbiol; 2010 Feb 14; 12(2):393-400. PubMed ID: 19840105 [Abstract] [Full Text] [Related]
14. Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa. Kuroki M, Igarashi Y, Ishii M, Arai H. Environ Microbiol Rep; 2014 Dec 14; 6(6):792-801. PubMed ID: 25186017 [Abstract] [Full Text] [Related]
16. Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti. Torres MJ, Avila S, Bedmar EJ, Delgado MJ. FEMS Microbiol Lett; 2018 Apr 01; 365(7):. PubMed ID: 29462313 [Abstract] [Full Text] [Related]
17. Levels of Periplasmic Nitrate Reductase during Denitrification are Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Siqueira AF, Sugawara M, Arashida H, Minamisawa K, Sánchez C. Microbes Environ; 2020 Apr 01; 35(3):. PubMed ID: 32554940 [Abstract] [Full Text] [Related]
18. The role of conserved proteins DrpA and DrpB in nitrate respiration of Thermus thermophilus. Chahlafi Z, Alvarez L, Cava F, Berenguer J. Environ Microbiol; 2018 Oct 01; 20(10):3851-3861. PubMed ID: 30187633 [Abstract] [Full Text] [Related]
19. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. Härtig E, Schiek U, Vollack KU, Zumft WG. J Bacteriol; 1999 Jun 01; 181(12):3658-65. PubMed ID: 10368138 [Abstract] [Full Text] [Related]
20. A cytochrome c containing nitrate reductase plays a role in electron transport for denitrification in Thermus thermophilus without involvement of the bc respiratory complex. Cava F, Zafra O, Berenguer J. Mol Microbiol; 2008 Oct 01; 70(2):507-18. PubMed ID: 18761683 [Abstract] [Full Text] [Related] Page: [Next] [New Search]