These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 26908641

  • 1. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T, Dorj A, Kim K, Kim YH.
    Proc Inst Mech Eng H; 2016 Apr; 230(4):288-97. PubMed ID: 26908641
    [Abstract] [Full Text] [Related]

  • 2. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA, Vanheule V, Fluit R, Koopman BH, Rasmussen J, Verdonschot N, Andersen MS.
    J Biomech Eng; 2015 Feb 01; 137(2):020904. PubMed ID: 25429519
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG.
    J Orthop Res; 2009 Oct 01; 27(10):1326-31. PubMed ID: 19396858
    [Abstract] [Full Text] [Related]

  • 4. Fine tuning total knee replacement contact force prediction algorithms using blinded model validation.
    Lundberg HJ, Knowlton C, Wimmer MA.
    J Biomech Eng; 2013 Feb 01; 135(2):021015. PubMed ID: 23445060
    [Abstract] [Full Text] [Related]

  • 5. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y, Phan CB, Koo S.
    J Biomech Eng; 2016 Feb 01; 138(2):021016. PubMed ID: 26720762
    [Abstract] [Full Text] [Related]

  • 6. In vivo medial and lateral tibial loads during dynamic and high flexion activities.
    Zhao D, Banks SA, D'Lima DD, Colwell CW, Fregly BJ.
    J Orthop Res; 2007 May 01; 25(5):593-602. PubMed ID: 17290383
    [Abstract] [Full Text] [Related]

  • 7. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G, Kinney AL, Fregly BJ, Font-Llagunes JM.
    J Biomech Eng; 2016 Aug 01; 138(8):0810011-08100111. PubMed ID: 27210105
    [Abstract] [Full Text] [Related]

  • 8. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ.
    J Biomech; 2010 Mar 22; 43(5):945-52. PubMed ID: 19962703
    [Abstract] [Full Text] [Related]

  • 9. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM, Stylianou AP, Kia M.
    J Biomech Eng; 2014 Feb 22; 136(2):021032. PubMed ID: 24389997
    [Abstract] [Full Text] [Related]

  • 10. An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns.
    Manal K, Buchanan TS.
    J Biomech Eng; 2013 Feb 22; 135(2):021014. PubMed ID: 23445059
    [Abstract] [Full Text] [Related]

  • 11. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG.
    J Biomech Eng; 2016 Feb 22; 138(2):021017. PubMed ID: 26769446
    [Abstract] [Full Text] [Related]

  • 12. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS, Guess TM.
    J Biomech Eng; 2018 Jul 01; 140(7):0710121-8. PubMed ID: 29164228
    [Abstract] [Full Text] [Related]

  • 13. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW, Piazza SJ.
    J Biomech Eng; 2013 Feb 01; 135(2):021013. PubMed ID: 23445058
    [Abstract] [Full Text] [Related]

  • 14. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP, Kinney AL, Banks SA, D'Lima DD, Besier TF, Lloyd DG, Fregly BJ.
    J Biomech Eng; 2014 Feb 01; 136(2):021031. PubMed ID: 24402438
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M, Stylianou AP, Guess TM.
    Med Eng Phys; 2014 Mar 01; 36(3):335-44. PubMed ID: 24418154
    [Abstract] [Full Text] [Related]

  • 16. Update on grand challenge competition to predict in vivo knee loads.
    Kinney AL, Besier TF, D'Lima DD, Fregly BJ.
    J Biomech Eng; 2013 Feb 01; 135(2):021012. PubMed ID: 23445057
    [Abstract] [Full Text] [Related]

  • 17. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF, DeMers MS, Delp SL, Browning RC.
    J Biomech; 2015 Feb 26; 48(4):644-650. PubMed ID: 25595425
    [Abstract] [Full Text] [Related]

  • 18. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations.
    Saliba CM, Brandon SCE, Deluzio KJ.
    J Biomech; 2017 May 24; 57():125-130. PubMed ID: 28342531
    [Abstract] [Full Text] [Related]

  • 19. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F, Chèze L, Dumas R.
    J Biomech; 2014 Jan 03; 47(1):50-8. PubMed ID: 24210475
    [Abstract] [Full Text] [Related]

  • 20. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG.
    J Biomech; 2013 Nov 15; 46(16):2778-86. PubMed ID: 24074941
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.