These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
408 related items for PubMed ID: 26917386
21. Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ. Carbohydr Polym; 2015 Sep 20; 129():148-55. PubMed ID: 26050900 [Abstract] [Full Text] [Related]
23. Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres. Gu Y, Liu X, Niu T, Huang J. Chem Commun (Camb); 2010 Sep 07; 46(33):6096-8. PubMed ID: 20657896 [Abstract] [Full Text] [Related]
24. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y. Carbohydr Polym; 2012 Nov 06; 90(4):1609-13. PubMed ID: 22944423 [Abstract] [Full Text] [Related]
25. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Chen YW, Lee HV, Juan JC, Phang SM. Carbohydr Polym; 2016 Oct 20; 151():1210-1219. PubMed ID: 27474672 [Abstract] [Full Text] [Related]
26. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Ilyas RA, Sapuan SM, Ishak MR. Carbohydr Polym; 2018 Feb 01; 181():1038-1051. PubMed ID: 29253930 [Abstract] [Full Text] [Related]
29. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES. Int J Biol Macromol; 2019 Feb 15; 123():379-388. PubMed ID: 30447353 [Abstract] [Full Text] [Related]
30. Cellulose nanofibrils extracted from the byproduct of cotton plant. Miao X, Lin J, Tian F, Li X, Bian F, Wang J. Carbohydr Polym; 2016 Jan 20; 136():841-50. PubMed ID: 26572420 [Abstract] [Full Text] [Related]
31. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis. Habibi N. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb 05; 136 Pt C():1450-3. PubMed ID: 25459705 [Abstract] [Full Text] [Related]
32. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Khan MN, Rehman N, Sharif A, Ahmed E, Farooqi ZH, Din MI. Int J Biol Macromol; 2020 Jun 15; 153():72-78. PubMed ID: 32135259 [Abstract] [Full Text] [Related]
33. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Khawas P, Deka SC. Carbohydr Polym; 2016 Feb 10; 137():608-616. PubMed ID: 26686170 [Abstract] [Full Text] [Related]
34. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM. Carbohydr Polym; 2014 Mar 15; 103():119-25. PubMed ID: 24528708 [Abstract] [Full Text] [Related]
35. Utilization of Agricultural Waste from Paddy (Rice) Fields for the Synthesis of Nanocellulose. Kaur M, Sharma P, Kumari S. J Nanosci Nanotechnol; 2021 Jun 01; 21(6):3622-3629. PubMed ID: 34739814 [Abstract] [Full Text] [Related]
36. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Le Normand M, Moriana R, Ek M. Carbohydr Polym; 2014 Oct 13; 111():979-87. PubMed ID: 25037439 [Abstract] [Full Text] [Related]
37. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. Bansal M, Chauhan GS, Kaushik A, Sharma A. Int J Biol Macromol; 2016 Oct 13; 91():887-94. PubMed ID: 27316771 [Abstract] [Full Text] [Related]