These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


585 related items for PubMed ID: 26928396

  • 1. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X, Lee J, Varshney V, Wohlwend JL, Roy AK, Luo T.
    Sci Rep; 2016 Mar 01; 6():22504. PubMed ID: 26928396
    [Abstract] [Full Text] [Related]

  • 2. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z, Qin G, Zuo X, Xiong Z, Hu M.
    Nanoscale; 2017 Mar 23; 9(12):4295-4309. PubMed ID: 28295111
    [Abstract] [Full Text] [Related]

  • 3. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence.
    Wang H, Qin G, Li G, Wang Q, Hu M.
    Phys Chem Chem Phys; 2017 May 24; 19(20):12882-12889. PubMed ID: 28474040
    [Abstract] [Full Text] [Related]

  • 4. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD, Liu JT.
    Phys Chem Chem Phys; 2017 Dec 06; 19(47):31982-31988. PubMed ID: 29177337
    [Abstract] [Full Text] [Related]

  • 5. Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide.
    Lee S, Kang SH, Kwon YK.
    Sci Rep; 2019 Mar 26; 9(1):5149. PubMed ID: 30914726
    [Abstract] [Full Text] [Related]

  • 6. Atomic-Layer Deposition of Single-Crystalline BeO Epitaxially Grown on GaN Substrates.
    Lee SM, Yum JH, Yoon S, Larsen ES, Lee WC, Kim SK, Shervin S, Wang W, Ryou JH, Bielawski CW, Oh J.
    ACS Appl Mater Interfaces; 2017 Dec 06; 9(48):41973-41979. PubMed ID: 29148718
    [Abstract] [Full Text] [Related]

  • 7. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD, Liu BG.
    J Phys Condens Matter; 2018 Mar 14; 30(10):105701. PubMed ID: 29376833
    [Abstract] [Full Text] [Related]

  • 8. Lattice thermal conductivity of ZnO: experimental and theoretical studies.
    Dash S, Padhan P.
    Phys Chem Chem Phys; 2024 May 22; 26(20):14754-14765. PubMed ID: 38716688
    [Abstract] [Full Text] [Related]

  • 9. Anisotropic lattice thermal conductivity in three-fold degeneracy topological semimetal MoP: a first-principles study.
    Guo SD.
    J Phys Condens Matter; 2017 Nov 01; 29(43):435704. PubMed ID: 28853714
    [Abstract] [Full Text] [Related]

  • 10. Thermal conductivity and large isotope effect in GaN from first principles.
    Lindsay L, Broido DA, Reinecke TL.
    Phys Rev Lett; 2012 Aug 31; 109(9):095901. PubMed ID: 23002858
    [Abstract] [Full Text] [Related]

  • 11. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK, Rawat A, Dimple, Jena N, Ahammed R, De Sarkar A.
    Nanoscale; 2019 Nov 21; 11(45):21880-21890. PubMed ID: 31697290
    [Abstract] [Full Text] [Related]

  • 12. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na3OBH4.
    Du PH, Zhang C, Sun J, Li T, Sun Q.
    ACS Appl Mater Interfaces; 2022 Oct 26; 14(42):47882-47891. PubMed ID: 36239388
    [Abstract] [Full Text] [Related]

  • 13. A C20 fullerene-based sheet with ultrahigh thermal conductivity.
    Shen Y, Wang FQ, Liu J, Guo Y, Li X, Qin G, Hu M, Wang Q.
    Nanoscale; 2018 Mar 29; 10(13):6099-6104. PubMed ID: 29546901
    [Abstract] [Full Text] [Related]

  • 14. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX, Liu JT, Guo SD, Li HC.
    Phys Chem Chem Phys; 2017 Jun 07; 19(22):14520-14526. PubMed ID: 28537286
    [Abstract] [Full Text] [Related]

  • 15. Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: a case study of ZnO.
    Consiglio A, Tian Z.
    Sci Rep; 2016 Nov 10; 6():36875. PubMed ID: 27830737
    [Abstract] [Full Text] [Related]

  • 16. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP2 (X = Si, Ge, and Sn).
    Wei L, Lv X, Yang Y, Xu J, Yu H, Zhang H, Wang X, Liu B, Zhang C, Zhou J.
    Inorg Chem; 2019 Apr 01; 58(7):4320-4327. PubMed ID: 30848900
    [Abstract] [Full Text] [Related]

  • 17. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC2N) of boron nitride and graphene: a first-principles study.
    Shafique A, Shin YH.
    Phys Chem Chem Phys; 2019 Aug 21; 21(31):17306-17313. PubMed ID: 31353375
    [Abstract] [Full Text] [Related]

  • 18. Significantly suppressed thermal transport by doping In and Al atoms in gallium nitride.
    Qi C, Yu L, Zhu X, Li S, Du K, Qin Z, Qin G, Xiong Z.
    Phys Chem Chem Phys; 2022 Sep 14; 24(35):21085-21093. PubMed ID: 36017798
    [Abstract] [Full Text] [Related]

  • 19. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS, Wu H, Hu Y.
    Nano Lett; 2017 Dec 13; 17(12):7507-7514. PubMed ID: 29115845
    [Abstract] [Full Text] [Related]

  • 20. Role of anharmonic strength and number of allowed three-phonon processes in lattice thermal conductivity of SnTe based compounds.
    Keshri SP, Medhi A.
    J Phys Condens Matter; 2021 Mar 17; 33(11):115701. PubMed ID: 33326936
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.