These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
488 related items for PubMed ID: 26931425
1. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography. Tang S, Bin Q, Chen W, Bai ZW, Huang SH. J Chromatogr A; 2016 Apr 01; 1440():112-122. PubMed ID: 26931425 [Abstract] [Full Text] [Related]
2. Preparation and Enantioseparation of Biselector Chiral Stationary Phases Based on Amylose and Chitin Derivatives. Zhang J, Wang ZQ, Chen W, Bai ZW. Anal Sci; 2015 Apr 01; 31(10):1091-7. PubMed ID: 26460376 [Abstract] [Full Text] [Related]
3. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation. Zhang J, Wang XC, Chen W, Bai ZW. Analyst; 2016 Jul 04; 141(14):4470-80. PubMed ID: 27191623 [Abstract] [Full Text] [Related]
4. Enantioseparation characteristics of biselector chiral stationary phases based on derivatives of cellulose and amylose. Wang ZQ, Liu JD, Chen W, Bai ZW. J Chromatogr A; 2014 Jun 13; 1346():57-68. PubMed ID: 24792697 [Abstract] [Full Text] [Related]
5. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography. Wang J, Huang SH, Chen W, Bai ZW. Molecules; 2016 Nov 13; 21(11):. PubMed ID: 27845761 [Abstract] [Full Text] [Related]
6. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography. Zhang L, Shen J, Zuo W, Okamoto Y. J Chromatogr A; 2014 Oct 24; 1365():86-93. PubMed ID: 25262030 [Abstract] [Full Text] [Related]
7. [Preparation and evaluation of amylose and cellulose tris (3-trifluoromethylphenylcarbamates)-based chiral stationary phases]. Jin Z, Hu F, Wang Y, Liu G, Wang F, Pan F, Tang S. Se Pu; 2011 Nov 24; 29(11):1087-92. PubMed ID: 22393696 [Abstract] [Full Text] [Related]
8. Does local chain conformation affect the chiral recognition ability of an amylose derivative? Comparison between linear and cyclic amylose tris(3,5-dimethylphenylcarbamate). Ryoki A, Kimura Y, Kitamura S, Maeda K, Terao K. J Chromatogr A; 2019 Aug 16; 1599():144-151. PubMed ID: 31003715 [Abstract] [Full Text] [Related]
9. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Peng L, Jayapalan S, Chankvetadze B, Farkas T. J Chromatogr A; 2010 Oct 29; 1217(44):6942-55. PubMed ID: 20863505 [Abstract] [Full Text] [Related]
10. High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea. Liang S, Huang SH, Chen W, Bai ZW. Anal Chim Acta; 2017 Sep 08; 985():183-193. PubMed ID: 28864189 [Abstract] [Full Text] [Related]
11. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography. Shen J, Li G, Yang Z, Okamoto Y. J Chromatogr A; 2016 Oct 07; 1467():199-205. PubMed ID: 27452988 [Abstract] [Full Text] [Related]
12. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations. Tang S, Jin Z, Sun B, Wang F, Tang W. Chirality; 2017 Sep 07; 29(9):512-521. PubMed ID: 28635058 [Abstract] [Full Text] [Related]
13. High performance chiral separation materials based on chitosan bis(3,5-dimethylphenylcarbamate)-(alkyl urea)s. Wang J, Xi JB, Chen W, Huang SH, Bai ZW. Carbohydr Polym; 2017 Jan 20; 156():481-489. PubMed ID: 27842849 [Abstract] [Full Text] [Related]
14. Chiral stationary phases based on chitosan bis(4-methylphenylcarbamate)-(alkoxyformamide). Feng ZW, Chen W, Bai ZW. J Sep Sci; 2016 Oct 20; 39(19):3728-3735. PubMed ID: 27514503 [Abstract] [Full Text] [Related]
15. N-Acylated chitosan bis(arylcarbamate)s: A class of promising chiral separation materials with powerful enantioseparation capability and high eluents tolerability. Tang S, Liu JD, Bin Q, Fu KQ, Wang XC, Luo YB, Huang SH, Bai ZW. J Chromatogr A; 2016 Dec 09; 1476():53-62. PubMed ID: 27863711 [Abstract] [Full Text] [Related]
16. Improved preparation of chiral stationary phases via immobilization of polysaccharide derivative-based selectors using diisocyanates. Tang S, Liu G, Li X, Jin Z, Wang F, Pan F, Okamoto Y. J Sep Sci; 2011 Aug 09; 34(15):1763-71. PubMed ID: 21688393 [Abstract] [Full Text] [Related]
17. Enantioseparation using chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives as chiral stationary phases for high-performance liquid chromatography. Zhang L, Deng H, Wu X, Gao H, Shen J, Cao H, Qiao Y, Okamoto Y. J Chromatogr A; 2020 Jul 19; 1623():461174. PubMed ID: 32505278 [Abstract] [Full Text] [Related]
18. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. Shen J, Zhao Y, Inagaki S, Yamamoto C, Shen Y, Liu S, Okamoto Y. J Chromatogr A; 2013 Apr 19; 1286():41-6. PubMed ID: 23506702 [Abstract] [Full Text] [Related]
19. Characteristic and complementary chiral recognition ability of four recently developed immobilized chiral stationary phases based on amylose and cellulose phenyl carbamates and benzoates. Onishi T, Ueda T, Yoshida K, Uosaki K, Ando H, Hamasaki R, Ohnishi A. Chirality; 2022 Jul 19; 34(7):925-940. PubMed ID: 35413148 [Abstract] [Full Text] [Related]
20. Chiral stationary phase based on cellulose derivative coated polymer microspheres and its separation performance. Li L, Yuan XT, Shi ZG, Xu LY. J Chromatogr A; 2020 Jul 19; 1623():461154. PubMed ID: 32505273 [Abstract] [Full Text] [Related] Page: [Next] [New Search]