These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 26940955

  • 1. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum.
    Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR.
    Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955
    [Abstract] [Full Text] [Related]

  • 2. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.
    Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu JR, Jiang C.
    Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217
    [Abstract] [Full Text] [Related]

  • 3. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum.
    Hou R, Jiang C, Zheng Q, Wang C, Xu JR.
    Mol Plant Pathol; 2015 Dec; 16(9):987-99. PubMed ID: 25781642
    [Abstract] [Full Text] [Related]

  • 4. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum.
    Huang P, Yu X, Liu H, Ding M, Wang Z, Xu JR, Jiang C.
    Nat Commun; 2024 Feb 09; 15(1):1216. PubMed ID: 38332031
    [Abstract] [Full Text] [Related]

  • 5. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.
    Subramaniam R, Narayanan S, Walkowiak S, Wang L, Joshi M, Rocheleau H, Ouellet T, Harris LJ.
    Mol Microbiol; 2015 Nov 09; 98(4):760-9. PubMed ID: 26248604
    [Abstract] [Full Text] [Related]

  • 6. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis.
    Seong KY, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu JR, Kistler HC.
    Mol Microbiol; 2009 Apr 09; 72(2):354-67. PubMed ID: 19320833
    [Abstract] [Full Text] [Related]

  • 7. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production.
    Peplow AW, Tag AG, Garifullina GF, Beremand MN.
    Appl Environ Microbiol; 2003 May 09; 69(5):2731-6. PubMed ID: 12732543
    [Abstract] [Full Text] [Related]

  • 8. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.
    Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR.
    Mol Plant Microbe Interact; 2014 Jun 09; 27(6):557-66. PubMed ID: 24450772
    [Abstract] [Full Text] [Related]

  • 9. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.
    Zhang L, Li B, Zhang Y, Jia X, Zhou M.
    Mol Plant Pathol; 2016 Jan 09; 17(1):16-28. PubMed ID: 25808544
    [Abstract] [Full Text] [Related]

  • 10. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum.
    Chen L, Tong Q, Zhang C, Ding K.
    Curr Genet; 2019 Feb 09; 65(1):153-166. PubMed ID: 29947970
    [Abstract] [Full Text] [Related]

  • 11. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum.
    Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C.
    Fungal Genet Biol; 2019 Nov 09; 132():103251. PubMed ID: 31319136
    [Abstract] [Full Text] [Related]

  • 12. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum.
    Wu J, Liu Y, Lv W, Yue X, Que Y, Yang N, Zhang Z, Ma Z, Talbot NJ, Wang Z.
    Fungal Genet Biol; 2015 Oct 09; 83():92-102. PubMed ID: 26341536
    [Abstract] [Full Text] [Related]

  • 13. Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species.
    Schmidt-Heydt M, Parra R, Geisen R, Magan N.
    J R Soc Interface; 2011 Jan 06; 8(54):117-26. PubMed ID: 20462881
    [Abstract] [Full Text] [Related]

  • 14. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum.
    Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W.
    Curr Genet; 2018 Feb 06; 64(1):285-301. PubMed ID: 28918485
    [Abstract] [Full Text] [Related]

  • 15. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum.
    Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR.
    Environ Microbiol; 2015 Apr 06; 17(4):1245-60. PubMed ID: 25040476
    [Abstract] [Full Text] [Related]

  • 16. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum.
    Mao X, Li L, Abubakar YS, Li Y, Luo Z, Chen M, Zheng W, Wang Z, Zheng H.
    J Agric Food Chem; 2024 May 01; 72(17):9637-9646. PubMed ID: 38642053
    [Abstract] [Full Text] [Related]

  • 17. The transcription factor FgMed1 is involved in early conidiogenesis and DON biosynthesis in the plant pathogenic fungus Fusarium graminearum.
    Fan G, Zhang K, Zhang J, Yang J, Yang X, Hu Y, Huang J, Zhu Y, Yu W, Hu H, Wang B, Shim W, Lu GD.
    Appl Microbiol Biotechnol; 2019 Jul 01; 103(14):5851-5865. PubMed ID: 31115634
    [Abstract] [Full Text] [Related]

  • 18. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression.
    Tag AG, Garifullina GF, Peplow AW, Ake C, Phillips TD, Hohn TM, Beremand MN.
    Appl Environ Microbiol; 2001 Nov 01; 67(11):5294-302. PubMed ID: 11679358
    [Abstract] [Full Text] [Related]

  • 19. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions.
    Diao X, Han Y, Liu C.
    J Agric Food Chem; 2018 Apr 11; 66(14):3637-3643. PubMed ID: 29562133
    [Abstract] [Full Text] [Related]

  • 20. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum.
    Yun Y, Guo P, Zhang J, You H, Guo P, Deng H, Hao Y, Zhang L, Wang X, Abubakar YS, Zhou J, Lu G, Wang Z, Zheng W.
    Mol Plant Pathol; 2020 Oct 11; 21(10):1307-1321. PubMed ID: 32881238
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.