These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 26944472

  • 1. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.
    Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H, Utsugisawa T, Ohga S, Miyano S, Ogawa S, Kojima S, Kanno H.
    Haematologica; 2016 May; 101(5):559-65. PubMed ID: 26944472
    [Abstract] [Full Text] [Related]

  • 2. ATP11C T418N, a gene mutation causing congenital hemolytic anemia, reduces flippase activity due to improper membrane trafficking.
    Arashiki N, Niitsuma K, Seki M, Takakuwa Y, Nakamura F.
    Biochem Biophys Res Commun; 2019 Aug 27; 516(3):705-712. PubMed ID: 31253392
    [Abstract] [Full Text] [Related]

  • 3. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia.
    van Dijk MJ, van Oirschot BA, Harrison AN, Recktenwald SM, Qiao M, Stommen A, Cloos AS, Vanderroost J, Terrasi R, Dey K, Bos J, Rab MAE, Bogdanova A, Minetti G, Muccioli GG, Tyteca D, Egée S, Kaestner L, Molday RS, van Beers EJ, van Wijk R.
    Am J Hematol; 2023 Dec 27; 98(12):1877-1887. PubMed ID: 37671681
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions.
    Arashiki N, Takakuwa Y.
    Curr Opin Hematol; 2017 May 27; 24(3):167-172. PubMed ID: 28118222
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.
    Arashiki N, Saito M, Koshino I, Kamata K, Hale J, Mohandas N, Manno S, Takakuwa Y.
    Biochemistry; 2016 Jun 28; 55(25):3504-3513. PubMed ID: 27267274
    [Abstract] [Full Text] [Related]

  • 8. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY, Molday LL, Wang J, Andersen JP, Molday RS.
    J Biol Chem; 2019 Apr 26; 294(17):6809-6821. PubMed ID: 30850395
    [Abstract] [Full Text] [Related]

  • 9. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S.
    Science; 2014 Jun 06; 344(6188):1164-8. PubMed ID: 24904167
    [Abstract] [Full Text] [Related]

  • 10. Phospholipid flippase ATP11C is endocytosed and downregulated following Ca2+-mediated protein kinase C activation.
    Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, Shin HW.
    Nat Commun; 2017 Nov 10; 8(1):1423. PubMed ID: 29123098
    [Abstract] [Full Text] [Related]

  • 11. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem; 2018 Feb 09; 293(6):2172-2182. PubMed ID: 29276178
    [Abstract] [Full Text] [Related]

  • 12. The ratio of ATP11C/PLSCR1 mRNA transcripts has clinical significance in sickle cell anemia.
    Pereira-Martins DA, Coelho-Silva JL, Domingos IF, Weinhäuser I, Franca-Neto PL, Araujo AS, Franca RF, Bezerra MA, Lucena-Araujo AR.
    Ann Hematol; 2022 Feb 09; 101(2):281-287. PubMed ID: 34651249
    [Abstract] [Full Text] [Related]

  • 13. Expression of three P4-phospholipid flippases-atp11a, atp11b, and atp11c in zebrafish (Danio rerio).
    Hawkey-Noble A, Umali J, Fowler G, French CR.
    Gene Expr Patterns; 2020 Jun 09; 36():119115. PubMed ID: 32344036
    [Abstract] [Full Text] [Related]

  • 14. [Congenital hemolytic anemia caused by a new mutation of ATP11C gene: a case report].
    Zhang HM, Yang L, Dong W, Liu QC.
    Zhonghua Xue Ye Xue Za Zhi; 2022 Jun 14; 43(6):528. PubMed ID: 35968600
    [No Abstract] [Full Text] [Related]

  • 15. Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
    Nakanishi H, Nishizawa T, Segawa K, Nureki O, Fujiyoshi Y, Nagata S, Abe K.
    Cell Rep; 2020 Sep 29; 32(13):108208. PubMed ID: 32997992
    [Abstract] [Full Text] [Related]

  • 16. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
    Segawa K, Yanagihashi Y, Yamada K, Suzuki C, Uchiyama Y, Nagata S.
    Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):12212-12217. PubMed ID: 30355768
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2.
    Nakanishi H, Hayashida K, Nishizawa T, Oshima A, Abe K.
    J Biol Chem; 2022 Jan 27; 298(1):101498. PubMed ID: 34922944
    [Abstract] [Full Text] [Related]

  • 19. Flippase and scramblase for phosphatidylserine exposure.
    Nagata S, Sakuragi T, Segawa K.
    Curr Opin Immunol; 2020 Feb 27; 62():31-38. PubMed ID: 31837595
    [Abstract] [Full Text] [Related]

  • 20. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.
    van Zwieten R, Bochem AE, Hilarius PM, van Bruggen R, Bergkamp F, Hovingh GK, Verhoeven AJ.
    Biochim Biophys Acta; 2012 Dec 27; 1821(12):1493-500. PubMed ID: 22960544
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.