These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


724 related items for PubMed ID: 26947552

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge.
    Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NN.
    J Agric Food Chem; 2008 Mar 26; 56(6):1963-76. PubMed ID: 18290614
    [Abstract] [Full Text] [Related]

  • 7. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.
    Zhang Y, Huai D, Yang Q, Cheng Y, Ma M, Kliebenstein DJ, Zhou Y.
    PLoS One; 2015 Mar 26; 10(10):e0140491. PubMed ID: 26465156
    [Abstract] [Full Text] [Related]

  • 8. Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed (Brassica napus L.) Infected with Sclerotinia sclerotiorum.
    Ma JQ, Xu W, Xu F, Lin A, Sun W, Jiang HH, Lu K, Li JN, Wei LJ.
    Genes (Basel); 2020 Jul 13; 11(7):. PubMed ID: 32668742
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Quantitative proteomics analysis reveals resistance differences of banana cultivar 'Brazilian' to Fusarium oxysporum f. sp. cubense races 1 and 4.
    Dong H, Li Y, Fan H, Zhou D, Li H.
    J Proteomics; 2019 Jul 15; 203():103376. PubMed ID: 31078632
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S.
    Mol Plant Microbe Interact; 2009 Mar 15; 22(3):235-44. PubMed ID: 19245318
    [Abstract] [Full Text] [Related]

  • 12. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M, Motallebi M, Zamani MR, Panjeh NZ.
    Biotechnol Lett; 2016 Jun 15; 38(6):1021-32. PubMed ID: 26875090
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK, Megha S, Basu U, Rahman MH, Kav NN.
    PLoS One; 2016 Jun 15; 11(7):e0158784. PubMed ID: 27388760
    [Abstract] [Full Text] [Related]

  • 15. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum.
    Garg H, Li H, Sivasithamparam K, Barbetti MJ.
    PLoS One; 2013 Jun 15; 8(6):e65205. PubMed ID: 23776450
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.
    Duke KA, Becker MG, Girard IJ, Millar JL, Dilantha Fernando WG, Belmonte MF, de Kievit TR.
    BMC Genomics; 2017 Jun 19; 18(1):467. PubMed ID: 28629321
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.