These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 26948410
1. On the morphology of antennular sensory and attachment organs in cypris larvae of the deep-sea vent/seep barnacles, Ashinkailepas and Neoverruca. Yorisue T, Chan BK, Kado R, Watanabe H, Inoue K, Kojima S, Høeg JT. J Morphol; 2016 May; 277(5):594-602. PubMed ID: 26948410 [Abstract] [Full Text] [Related]
2. Cirripede Cypris Antennules: How Much Structural Variation Exists Among Balanomorphan Species from Hard-Bottom Habitats? Chan BKK, Sari A, Høeg JT. Biol Bull; 2017 Oct; 233(2):135-143. PubMed ID: 29373061 [Abstract] [Full Text] [Related]
3. Morphology of Cyprid Attachment Organs Compared Across Disparate Barnacle Taxa: Does It Relate to Habitat? Al-Yahya H, Chen HN, Chan BK, Kado R, Høeg JT. Biol Bull; 2016 Oct; 231(2):120-129. PubMed ID: 27820904 [Abstract] [Full Text] [Related]
4. Antennulary sensory organs in cyprids of Octolasmis and Lepas (Crustacea: Thecostraca: Cirripedia: Thoracica): a scanning electron microscopic study. Blomsterberg M, Høeg JT, Jeffries WB, Lagersson NC. J Morphol; 2004 May; 260(2):141-53. PubMed ID: 15108154 [Abstract] [Full Text] [Related]
5. Cypris morphology in the barnacles Ibla and Paralepas (Crustacea: Cirripedia Thoracica) implications for cirripede evolution. Høeg JT, Achituv Y, Chan BK, Chan K, Jensen PG, Pérez-Losada M. J Morphol; 2009 Feb; 270(2):241-55. PubMed ID: 19034914 [Abstract] [Full Text] [Related]
6. Antennular sensory organs in cyprids of balanomorphan cirripedes: standardizing terminology using Megabalanus rosa. Bielecki J, Chan BK, Hoeg JT, Sari A. Biofouling; 2009 Feb; 25(3):203-14. PubMed ID: 19169952 [Abstract] [Full Text] [Related]
7. Morphometric and molecular identification of individual barnacle cyprids from wild plankton: an approach to detecting fouling and invasive barnacle species. Chen HN, Høeg JT, Chan BK. Biofouling; 2013 Feb; 29(2):133-45. PubMed ID: 23327366 [Abstract] [Full Text] [Related]
8. Probing the settlement signals of Amphibalanus amphitrite. Kotsiri M, Protopapa M, Roumelioti GM, Economou-Amilli A, Efthimiadou EK, Dedos SG. Biofouling; 2018 May; 34(5):492-506. PubMed ID: 29792352 [Abstract] [Full Text] [Related]
9. Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae. Maruzzo D, Conlan S, Aldred N, Clare AS, Høeg JT. Biofouling; 2011 Feb; 27(2):225-39. PubMed ID: 21302160 [Abstract] [Full Text] [Related]
10. The monophyletic origin of a remarkable sexual system in akentrogonid rhizocephalan parasites: a molecular and larval structural study. Glenner H, Høeg JT, Stenderup J, Rybakov AV. Exp Parasitol; 2010 May; 125(1):3-12. PubMed ID: 19786021 [Abstract] [Full Text] [Related]
11. Metamorphosis in the cirripede crustacean Balanus amphitrite. Maruzzo D, Aldred N, Clare AS, Høeg JT. PLoS One; 2012 May; 7(5):e37408. PubMed ID: 22666355 [Abstract] [Full Text] [Related]
13. Sex-specific metamorphosis of cypris larvae in the androdioecious barnacle Scalpellum scalpellum (Crustacea: Cirripedia: Thoracica) and its implications for the adaptive evolution of dwarf males. Dreyer N, Olesen J, Dahl RB, Kan Chan BK, Høeg JT. PLoS One; 2018 Sep; 13(2):e0191963. PubMed ID: 29466363 [Abstract] [Full Text] [Related]
14. Phylogeny and shell form evolution of the hydrothermal vent asymmetrical barnacles (Cirripedia, Thoracicalcarea, Neoverrucidae). Kim SJ, Lee WK, Ju SJ, Chan BKK. Mol Phylogenet Evol; 2022 Apr; 169():107391. PubMed ID: 35026427 [Abstract] [Full Text] [Related]
15. Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement. Zhang G, Yan GY, Yang XX, Wong YH, Sun J, Zhang Y, He LS, Xu Y, Qian PY. J Exp Zool B Mol Dev Evol; 2016 Jun; 326(4):237-49. PubMed ID: 27245369 [Abstract] [Full Text] [Related]
16. Host specificity and adaptive evolution in settlement behaviour of coral-associated barnacle larvae (Cirripedia: Pyrgomatidae). Yap FC, Chen HN, Chan BKK. Sci Rep; 2023 Jun 14; 13(1):9668. PubMed ID: 37316644 [Abstract] [Full Text] [Related]
17. Independent and adaptive evolution of phenotypic novelties driven by coral symbiosis in barnacle larvae. Dreyer N, Tsai PC, Olesen J, Kolbasov GA, Høeg JT, Chan BKK. Evolution; 2022 Jan 14; 76(1):139-157. PubMed ID: 34705275 [Abstract] [Full Text] [Related]
18. Sponge symbiosis is facilitated by adaptive evolution of larval sensory and attachment structures in barnacles. Yu MC, Dreyer N, Kolbasov GA, Høeg JT, Chan BKK. Proc Biol Sci; 2020 May 27; 287(1927):20200300. PubMed ID: 32396804 [Abstract] [Full Text] [Related]
19. Structures of six cDNAs expressed specifically at cypris larvae of barnacles, Balanus amphitrite. Okazaki Y, Shizuri Y. Gene; 2000 May 30; 250(1-2):127-35. PubMed ID: 10854786 [Abstract] [Full Text] [Related]
20. Cross-species, amplifiable microsatellite markers for neoverrucid barnacles from deep-sea hydrothermal vents developed using next-generation sequencing. Nakajima Y, Shinzato C, Khalturina M, Watanabe H, Inagaki F, Satoh N, Mitarai S. Int J Mol Sci; 2014 Aug 18; 15(8):14364-71. PubMed ID: 25196437 [Abstract] [Full Text] [Related] Page: [Next] [New Search]