These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


497 related items for PubMed ID: 26951095

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods.
    Black C, Grocott MP, Singer M.
    Br J Anaesth; 2015 Feb; 114(2):261-8. PubMed ID: 25354946
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments.
    Sundström M, Tjäder I, Rooyackers O, Wernerman J.
    Clin Nutr; 2013 Feb; 32(1):118-21. PubMed ID: 22763268
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study.
    Kagan I, Zusman O, Bendavid I, Theilla M, Cohen J, Singer P.
    Crit Care; 2018 Aug 03; 22(1):186. PubMed ID: 30075796
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients.
    Slingerland-Boot H, Adhikari S, Mensink MR, van Zanten ARH.
    Clin Nutr ESPEN; 2022 Apr 03; 48():370-377. PubMed ID: 35331516
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Validation of ventilator-derived VCO2 measurements to determine energy expenditure in ventilated critically ill children.
    Kerklaan D, Augustus ME, Hulst JM, van Rosmalen J, Verbruggen SCAT, Joosten KFM.
    Clin Nutr; 2017 Apr 03; 36(2):452-457. PubMed ID: 26803170
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Gas exchange measurement during pediatric mechanical ventilation--agreement between gas sampling at the airway and the ventilator exhaust.
    Smallwood CD, Mehta NM.
    Clin Nutr; 2013 Dec 03; 32(6):988-92. PubMed ID: 23587734
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D, Xian X, Terrera M, Krishnan R, Miller D, Bridgeman D, Tao K, Zhang L, Tsow F, Forzani ES, Tao N.
    Clin Nutr; 2014 Apr 03; 33(2):341-7. PubMed ID: 23827182
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients.
    Frankenfield DC, Sarson GY, Blosser SA, Cooney RN, Smith JS.
    J Am Coll Nutr; 1996 Aug 03; 15(4):397-402. PubMed ID: 8829096
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.