These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 26951633
1. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z. BMC Genomics; 2016 Mar 08; 17():200. PubMed ID: 26951633 [Abstract] [Full Text] [Related]
2. Identification of drought response genes by digital gene expression (DGE) analysis in Caragana korshinskii Kom. Long Y, Liang F, Zhang J, Xue M, Zhang T, Pei X. Gene; 2020 Jan 30; 725():144170. PubMed ID: 31647996 [Abstract] [Full Text] [Related]
3. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing. Ning P, Zhou Y, Gao L, Sun Y, Zhou W, Liu F, Yao Z, Xie L, Wang J, Gong C. PLoS One; 2017 Jan 30; 12(2):e0172017. PubMed ID: 28207805 [Abstract] [Full Text] [Related]
4. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC. BMC Genomics; 2013 Jan 16; 14():29. PubMed ID: 23324106 [Abstract] [Full Text] [Related]
5. Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq. Li KQ, Xu XY, Huang XS. PLoS One; 2016 Jan 16; 11(2):e0149352. PubMed ID: 26900681 [Abstract] [Full Text] [Related]
6. CkREV Enhances the Drought Resistance of Caragana korshinskii through Regulating the Expression of Auxin Synthetase Gene CkYUC5. Li JY, Ren JJ, Zhang TX, Cui JH, Gong CM. Int J Mol Sci; 2022 May 24; 23(11):. PubMed ID: 35682582 [Abstract] [Full Text] [Related]
7. Overexpression of γ-glutamylcysteine synthetase gene from Caragana korshinskii decreases stomatal density and enhances drought tolerance. Lu B, Luo X, Gong C, Bai J. BMC Plant Biol; 2021 Oct 01; 21(1):444. PubMed ID: 34598673 [Abstract] [Full Text] [Related]
8. Enhanced tolerance to drought stress resulting from Caragana korshinskii CkWRKY33 in transgenic Arabidopsis thaliana. Li Z, Liang F, Zhang T, Fu N, Pei X, Long Y. BMC Genom Data; 2021 Mar 10; 22(1):11. PubMed ID: 33691617 [Abstract] [Full Text] [Related]
9. Reference gene selection for qRT-PCR in Caragana korshinskii Kom. under different stress conditions. Yang Q, Yin J, Li G, Qi L, Yang F, Wang R, Li G. Mol Biol Rep; 2014 Mar 10; 41(4):2325-34. PubMed ID: 24452712 [Abstract] [Full Text] [Related]
10. Transcriptome-based identification and expression profiling of AP2/ERF members in Caragana intermedia and functional analysis of CiDREB3. Liu K, Yang Q, Yang T, Yang F, Wang R, Cong J, Li G. Mol Biol Rep; 2021 Dec 10; 48(12):7953-7965. PubMed ID: 34677713 [Abstract] [Full Text] [Related]
11. Drought stress-induced autophagy gene expression is correlated with carbohydrate concentrations in Caragana korshinskii. Luo X, Zhang Y, Wu H, Bai J. Protoplasma; 2020 Jul 10; 257(4):1211-1220. PubMed ID: 32318821 [Abstract] [Full Text] [Related]
12. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. Dong B, Wu B, Hong W, Li X, Li Z, Xue L, Huang Y. PLoS One; 2017 Jul 10; 12(7):e0181835. PubMed ID: 28759610 [Abstract] [Full Text] [Related]
13. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. Yang L, Jin Y, Huang W, Sun Q, Liu F, Huang X. BMC Genomics; 2018 Sep 27; 19(1):717. PubMed ID: 30261913 [Abstract] [Full Text] [Related]
14. Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast. Yang DH, Song LY, Hu J, Yin WB, Li ZG, Chen YH, Su XH, Wang RR, Hu ZM. Biochem Biophys Res Commun; 2012 Jan 13; 417(2):732-7. PubMed ID: 22197553 [Abstract] [Full Text] [Related]
15. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G, Zenda T, Liu S, Wang X, Jin H, Dong A, Yang Y, Duan H. Genes Genomics; 2020 Aug 13; 42(8):937-955. PubMed ID: 32623576 [Abstract] [Full Text] [Related]
16. Iris lactea var. chinensis plant drought tolerance depends on the response of proline metabolism, transcription factors, transporters and the ROS-scavenging system. Zhang Y, Zhang R, Song Z, Fu W, Yun L, Gao J, Hu G, Wang Z, Wu H, Zhang G, Wu J. BMC Plant Biol; 2023 Jan 09; 23(1):17. PubMed ID: 36617566 [Abstract] [Full Text] [Related]
17. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. Yan F, Zhu Y, Zhao Y, Wang Y, Li J, Wang Q, Liu Y. BMC Genomics; 2020 Jun 23; 21(1):423. PubMed ID: 32576152 [Abstract] [Full Text] [Related]
18. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H. Int J Mol Sci; 2019 Mar 13; 20(6):. PubMed ID: 30871211 [Abstract] [Full Text] [Related]
19. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. Zhu J, Zhang L, Li W, Han S, Yang W, Qi L. PLoS One; 2013 Mar 13; 8(1):e53196. PubMed ID: 23301042 [Abstract] [Full Text] [Related]
20. Comprehensive Analysis of Rice Seedling Transcriptome during Dehydration and Rehydration. Park SY, Jeong DH. Int J Mol Sci; 2023 May 08; 24(9):. PubMed ID: 37176147 [Abstract] [Full Text] [Related] Page: [Next] [New Search]